Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
N Biotechnol ; 79: 111-119, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38158018

ABSTRACT

The brewery industry is under economic and environmental pressure to minimize residual management costs, particularly brewery spent grain (BSG), which accounts for 80-85% (w/w) of the total by-products generated. BSG is a lignocellulosic material primarily composed of carbohydrates, proteins and lipids. Developing a biorefinery model for conversion of BSG into value-added products is a plausible idea. Previous work optimized the pretreatment of BSG with the ionic liquid [N1112OH][Gly] and further release of fermentable sugar-containing solutions by enzymatic hydrolysis, using an enzymatic cocktail obtained by solid-state fermentation of BSG with Aspergillus brasiliensis CECT 2700 and Trichoderma reesei CECT 2414. The current work ends the biorefinery process, studying the fermentation of these culture media with two LAB strains, Lactobacillus pentosus CECT 4023 and Lactobacillus plantarum CECT 221, from which the production of organic acids, bacteriocins, and microbial biosurfactants (mBS) was obtained. In addition to the bacteriocin activity observed, a mass balance of the whole biorefinery process quantified the production of 106.4 g lactic acid and 6.76 g mBS with L. plantarum and 116.1 g lactic acid and 4.65 g mBS with L. pentosus from 1 kg of dry BSG. Thus, BSG shows a great potential for waste valorization, playing a major role in the implementation of biomass biorefineries in circular bioeconomy.


Subject(s)
Edible Grain , Lactic Acid , Fermentation , Edible Grain/metabolism , Biomass
2.
Biotechnol Lett ; 45(10): 1293-1307, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37566297

ABSTRACT

Oilseed cakes (OC) are natural sources of lignocellulosic biomass, produced every year in large amounts. In addition to their main applications as animal feed, plant or soil fertilizer, and compost, they present enormous potential for being used in biotechnological processes for the obtainment and extraction of valuable bioactive compounds. This work evaluated the effect of solid-state fermentation on the bioactive properties of extracts obtained from the bioprocessing of OC and evaluated the effect of solvents on the recovery of compounds with higher bioactive potential. A general decrease of EC50 values was observed for fermented extracts obtained using a mixture of water/methanol (1:1) as extraction solvent. A decrease in the minimum inhibitory concentration was observed for fermented water extracts compared to non-fermented. Additionally, growth inhibition of Listeria monocytogenes was observed when using aqueous methanolic fermented extracts. These extracts also exhibited a higher percentage of growth reduction against phytopathogenic fungi, and some extracts exhibited increased protection against genotoxic agents such as camptothecin and bisphenol A. It was demonstrated that bioprocessing of OC through SSF is an effective approach to obtaining valuable compounds with bioactive properties for use in the food, pharmaceutical or cosmetic industries.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Plant Extracts/pharmacology , Fermentation , Solvents , Water , Methanol
3.
J Biotechnol ; 364: 5-12, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36708994

ABSTRACT

Oilseed cakes (OC) present high potential as feedstock for the biobased industry. Biotechnological processes allow OC valorization by the production of diverse value-added products and simultaneously altering OC structure, improving their nutritional value, and boosting OC utilization in animal feed. This work explored the use of fungi consortium of two different species as a bioprocessing approach to improve the nutritional quality of OC, obtain enzymes and antioxidants by solid-state fermentation (SSF) of sunflower cake (SFC) and rapeseed cake (RSC). Rhyzopus oryzae and Aspergillus ibericus consortium led to the highest production of cellulase (135 U/g) and ß-glucosidase (265 U/g) while maximum protease (228 U/g) was obtained with A. niger and R. oryzae consortium. Maximum xylanase production (886 U/g) was observed in SSF of RSC resulting in high hemicellulose reduction. The synergistic action of lignocellulosic enzymes resulted in extracts with increased antioxidant potential with possible application as food additives against oxidative stress.


Subject(s)
Antioxidants , Cellulase , Animals , Fungi/metabolism , Cellulase/metabolism , Fermentation , Animal Feed/analysis
4.
Foods ; 12(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36673397

ABSTRACT

Fortifying fish feeds with bioactive compounds, such as enzymes and antioxidants, has been an adopted strategy to improve feed nutritional quality and sustainability. However, feed additives can lose activity/effectiveness during pelleting and storage processes. This work aimed to monitor functional activity stability in feeds supplemented with a bioactive extract, including cellulases, xylanases, and antioxidants. This bioactive extract (FBE) was produced by Aspergillus ibericus under solid-state fermentation of olive mill and winery by-products. Two isoproteic and isolipidic diets were formulated and unsupplemented or supplemented with lyophilized FBE (0.26% w/w). Both diets were stored at room temperature (RT) or 4 °C for 4 months. Results showed that feed storage at 4 °C enhanced the stability of the enzymes and cellulase was more stable than xylanase. Compared to RT, storage at 4 °C increased cellulase and xylanase half-life by circa 60 and 14%. Dietary FBE supplementation increased antioxidant activity and storage at 4 °C reduced antioxidant activity loss, while in the unsupplemented diet, antioxidant activity decreased to the same level in both storage temperatures. Dietary supplementation with FBE reduced lipid peroxidation by 17 and 19.5% when stored at 4 °C or RT, respectively. The present study is a step toward improving the storage conditions of diets formulated with bioactive compounds.

5.
Foods ; 11(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36496673

ABSTRACT

Seaweeds are valuable feedstocks with the potential to be used as ingredients in aquafeeds. However, their use are still limited, given their recalcitrant polysaccharide structure. To break this structure, a biotechnological approach such as solid-state fermentation (SSF) by filamentous fungi can be used, which simultaneously increases the nutritional value of the biomass. However, SSF has hardly been studied in seaweeds; thus, in this study, five different seaweeds (Gracilaria sp., Porphyra dioica, Codium tomentosum, Ulva rigida, and Alaria esculenta) were used as substrates in SSF with Aspergillus ibericus MUM 03.49 and A. niger CECT 2915. Firstly, the seaweeds were fully characterized, and, then, changes in the crude protein and carbohydrate contents were assessed in the fermented biomass, as well as any carbohydrases production. The SSF of U. rigida with both fungi resulted in the maximum xylanase and ß-glucosidase activities. The maximum cellulase activity was achieved using Gracilaria sp. and U. rigida in the SSF with A. niger. The protein content increased in C. tomentosum after SSF with A. ibericus and in U. rigida after SSF with both fungi. Moreover, U. rigida's carbohydrate content decreased by 54% and 62% after SSF with A. ibericus and A. niger, respectively. Seaweed bioprocessing using SSF is a sustainable and cost-effective strategy that simultaneously produces high-value enzymes and nutritionally enhanced seaweeds to be included in aquafeeds.

6.
Foods ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36429302

ABSTRACT

Novel environmentally friendly pretreatments have been developed in recent years to improve biomass fractionation. Solid-state fermentation (SSF) and treatment with ionic liquids show low environmental impact and can be used in biorefinery of biomass. In this work, these processes were assessed with brewery spent grain (BSG). First, BSG was used as a substrate to produce cellulases and xylanases by SSF with the fungi Aspergillus brasiliensis CECT 2700 and Trichoderma reesei CECT 2414. Then, BSG was pretreated with the ionic liquid [N1112OH][Gly] and hydrolyzed with the crude enzymatic extracts. Results showed that SSF of BSG with A. brasiliensis achieved the highest enzyme production; meanwhile, the pretreatment with ionic liquids allowed glucan and xylan fractions to increase and reduce the lignin content. In addition, a mixture of the extracts from both fungi in a ratio of 2.5:0.5 Aspergillus/Trichoderma (v/v) efficiently hydrolyzed the BSG previously treated with the ionic liquid [N1112OH][Gly], reaching saccharification percentages of 80.68%, 54.29%, and 19.58% for glucan, xylan, and arabinan, respectively. In conclusion, the results demonstrated that the BSG biorefinery process developed in this work is an effective way to obtain fermentable sugar-containing solutions, which can be used to produce value-added products.

7.
Foods ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36429305

ABSTRACT

Nowadays, agro-industrial by-products are of increasing interest as a source of antioxidant compounds. Thus, alternative green techniques to extract antioxidant compounds have been pursued. The use of enzymes to release bioactive compounds through antioxidant activity reduces the environmental impact caused by traditional extraction systems using organic solvents. A crude enzymatic extract containing carbohydrolases was produced by solid-state fermentation (SSF) of an olive pomace and brewery spent-grain combination. The crude extract was evaluated at different temperatures and pH values and its thermostability was studied. Results showed that ß-glucosidase and cellulase were more stable than xylanase, particularly cellulase, which kept 91% of its activity for 72 h at 45 °C. The extract was also applied in enzymatic treatments (ET) to liberate antioxidant compounds from winery, olive mill and brewery by-products under optimal conditions for enzymatic activities. The highest antioxidant activity was found in extracts obtained after enzymatic treatment of exhausted olive pomace (EOP). Enzymatic crude extract produced by SSF was successfully applied in the extraction of antioxidant compounds from winery, olive mill and brewery by-products. Thus, integrating SSF and enzymatic technologies is a valuable approach to implement circular economy practices in the agro-food industry.

8.
Front Bioeng Biotechnol ; 10: 732948, 2022.
Article in English | MEDLINE | ID: mdl-35592554

ABSTRACT

Brewer's spent grain (BSG) is the main brewery industry by-product, with potential applications in the feed and food industries due to its carbohydrate composition. In addition, the lignocellulosic nature of BSG makes it an adequate substrate for carbohydrases production. In this work, solid-state fermentation (SSF) of BSG was performed with Aspergillus ibericus, a non-mycotoxin producer fungus with a high capacity to hydrolyze the lignocellulosic matrix of the agro-industrial by-products. SSF was performed at different scales to produce a crude extract rich in cellulase and xylanase. The potential of the crude extract was tested in two different applications: -(1) - the enzymatic hydrolysis of the fermented BSG and (2) - as a supplement in aquafeeds. SSF of BSG increased the protein content from 25% to 29% (w/w), while the fiber content was reduced to 43%, and cellulose and hemicellulose contents were markedly reduced to around 15%. The scale-up of SSF from 10 g of dry BSG in flasks to 50 g or 400 g in tray-type bioreactors increased 55% and 25% production of cellulase and xylanase, up to 323 and 1073 U g-1 BSG, respectively. The optimum temperature and pH of maximal activities were found to be 55°C and pH 4.4 for xylanase and 50°C and pH 3.9 for cellulase, cellulase being more thermostable than xylanase when exposed at temperatures from 45°C to 60°C. A Box-Behnken factorial design was applied to optimize the hydrolysis of the fermented BSG by crude extract. The crude extract load was a significant factor in sugars release, highlighting the role of hydrolytic enzymes, while the load of fermented BSG, and addition of a commercial ß-glucosidase were responsible for the highest phenolic compounds and antioxidant activity release. The lyophilized crude extract (12,400 and 1050 U g-1 lyophilized extract of xylanase and cellulase, respectively) was also tested as an enzyme supplement in aquafeed for European seabass (Dicentrarchus labrax) juveniles. The dietary supplementation with the crude extract significantly improved feed and protein utilization. The processing of BSG using biological treatments, such as SSF with A. ibericus, led to the production of a nutritionally enriched BSG and a crude extract with highly efficient carbohydrases capable of hydrolyzing lignocellulosic substrates, such as BSG, and with the potential to be used as feed enzymes with remarkable results in improving feed utilization of an important aquaculture fish species.

9.
Biotechnol Prog ; 37(3): e3113, 2021 05.
Article in English | MEDLINE | ID: mdl-33342062

ABSTRACT

Polyunsaturated fatty acids (PUFAs) are essential in healthy diets and their production is extremely important. Natural sources of PUFAs includes animal and aquatic products such as marine fish oil, however there are several limitations such as the decrease of fish stocks throughout the world. Thus, microbial oils are a preferable source of PUFAs. Herein, it was studied the production of PUFAs by Mortierella alpina under solid-state fermentation (SSF) using polyurethane foam as inert substrate and synthetic medium or lignocellulosic hydrolysate as source of C, N, and other nutrients. Several parameters of fermentation conditions were evaluated as carbon source, inductors addition, ratio C/N and temperature. The highest amount of total PUFAs per mass of solid (535.41 ± 24.12 mg/g), linoleic acid (129.66 ± 5.84 mg/g), and α-linoleic acid (401.93 ± 18.10 mg/g) were produced when the culture medium contained 20 g/L glucose, 10% (w/v) linseed oil, the C/N ratio was adjusted to 25 and the incubation temperature was 25°C for 3 days decreasing to 16°C on the remaining 4 days of fermentation. In addition, a hemicellulosic hydrolysate can be used as low-cost substrate to produce PUFAs, although the production was lower than the achieved with synthetic medium. SSF showed an interesting technology for microbial PUFAs production.


Subject(s)
Fatty Acids, Unsaturated , Fermentation/physiology , Mortierella/metabolism , Polyurethanes/chemistry , Fatty Acids, Unsaturated/analysis , Fatty Acids, Unsaturated/metabolism , Lignin/chemistry , Lignin/metabolism
10.
Bioresour Technol ; 281: 277-285, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30825831

ABSTRACT

The macroalgae aquaculture industry has grown up in the last years, and new applications for macroalgae should be considered. In this work, sequential biological treatments as solid-state fermentation (SSF) by Aspergillus ibericus and enzymatic hydrolysis (EH) were applied to washed and unwashed Ulva rigida. SSF of unwashed macroalgae showed higher xylanase (359.8 U/g), cellulase (73.07 U/g) and ß-glucosidase (14.9 U/g) activities per dry mass of macroalgae. After SSF, two strategies to carry out EH were assayed. The best process was SSF followed by EH by simply adding a buffer. The non-starch polysaccharides content was reduced by 93.2%, achieving a glucan conversion of 98%. In addition, the antioxidant activity was improved 2.8-fold and the protein concentration of macroalgae extracts increased from 16.9% to 29.8% (w/w). These biological treatments allowed to increase macroalgae value as feedstuff with potential for use in aquafeeds.


Subject(s)
Aspergillus/enzymology , Cellulase/metabolism , Ulva/metabolism , Aquaculture , Fermentation , Hydrolysis , Lignin/metabolism , Nutritive Value , Polysaccharides/metabolism , Seaweed/metabolism
11.
Bioprocess Biosyst Eng ; 40(7): 1123-1132, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28488139

ABSTRACT

Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH4)2SO4. Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g-1 (dry basis) was obtained after 7 days of fermentation.


Subject(s)
Fermentation , Bioreactors , Industrial Microbiology , Lipase , Olea
12.
Bioresour Technol ; 214: 737-746, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27209456

ABSTRACT

Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different. The use of both wastes in SSF was evaluated and a screening of fungi for xylanase and cellulase production was carried out. After screening, the use of exhausted olive pomace and Aspergillus niger led to the highest enzyme activities, so that they were used in the study of ultrasounds pre-treatment. The results showed that the sonication led to a 3-fold increase of xylanase activity and a decrease of cellulase activity. Moreover, the liquid fraction obtained from ultrasounds treatment was used to adjust the moisture of solid and a positive effect on xylanase (3.6-fold increase) and cellulase (1.2-fold increase) production was obtained.


Subject(s)
Aspergillus niger/enzymology , Cellulase/biosynthesis , Endo-1,4-beta Xylanases/biosynthesis , Fermentation , Olea/chemistry , Ultrasonics , Biotechnology , Cellulose/chemistry , High-Energy Shock Waves , Hydrolysis , Kinetics , Lignin/chemistry , Nitrogen/chemistry , Olive Oil , Sonication , Temperature
13.
J Sci Food Agric ; 96(14): 4760-4771, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27235102

ABSTRACT

BACKGROUND: Herbal liqueurs are alcoholic beverages produced by the maceration or distillation of aromatic and medicinal plants in alcohol, and are also highly valued for their medicinal properties. The process conditions, as well as the number and quantity of the plants employed, will have a great influence on the quality of the liqueur obtained. The aim of this research was to optimize these important variables. RESULTS: A Box-Benhken experimental design was used to evaluate the independent variables: alcohol content, amount of plant and time during the experimental maceration of plants in grape marc distillate. Four plants were assessed, with the main compound of each plant representing the dependent variable evaluated with respect to following the evolution of the maceration process. Bisabolol oxide A in Matricaria recutita L., linalool in Coriander sativum L. and eucalyptol in Eucalyptus globulus Labill. were quantified using a gas chromatography-flame ionization detector. Glycyrrhizic acid in Glycyrrhiza glabra L was determined using a high-performance liquid chromatography-diode array detector. Other dependent variables were also evaluated: total phenolic content, color parameters and consumer preference (i.e. appearance). CONCLUSION: The experimental designs allowed the selection of the optimal maceration conditions for each parameter, including the preference score of consumers: 70% (v/v) of ethanol, 40 g L-1 plant concentration and a maceration process of 3 weeks. © 2016 Society of Chemical Industry.


Subject(s)
Plant Extracts/chemistry , Plants, Medicinal/chemistry , Vitis/chemistry , Acyclic Monoterpenes , Chamomile , Coriandrum , Cyclohexanols/chemistry , Eucalyptol , Eucalyptus , Monocyclic Sesquiterpenes , Monoterpenes/chemistry , Sesquiterpenes/chemistry
14.
Crit Rev Biotechnol ; 36(4): 691-704, 2016 Aug.
Article in English | MEDLINE | ID: mdl-25665633

ABSTRACT

Xylitol is a pentahydroxy sugar alcohol coming from xylose with many applications in the food and pharmaceutical industries as a low caloric sweetener suitable for diabetics and as an active ingredient in several biomedical applications. The microbial bioproduction of xylitol from natural xylose coming from lignocellulosic materials appears a sustainable and a promising alternative to chemical synthesis, which works at stronger reaction conditions and generates undesirable co-products which must be removed. There are several reviews that study the metabolic pathways in wild and transformed xylitol producing yeasts and the culture conditions that enhance xylitol accumulation, which are mainly related to the need of microaerobiose for the best producing wild yeasts. Nevertheless, there are relatively few studies focusing on the engineering aspects related to scalable systems and bioreactors that could result in a final industrial stage. This review explores recent advances on xylitol production using immobilized systems, which have been proposed to facilitate the reuse of the biocatalyst for extended periods and the main types of bioreactors available assayed for this purpose.


Subject(s)
Xylitol/metabolism , Yeasts/metabolism , Bioreactors , Cells, Immobilized/metabolism
15.
J Sci Food Agric ; 96(10): 3583-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26601619

ABSTRACT

BACKGROUND: Pollution by olive mill wastes is an important problem in the Mediterranean area and novel solutions for their proper management and valorization are needed. The aim of this work was to optimize a solid-state fermentation (SSF) process to produce lipase using olive pomace (OP) as the main source of nutrients by several Aspergillus spp. Optimized variables in two different designs were: ratio between olive pomace and wheat bran (OP:WB), NaNO3 , Czapek nutrients, fermentation time, moisture content (MC) and temperature. RESULTS: Results showed that the mixture OP:WB and MC were the most significant factors affecting lipase production for all fungi strains tested. With MC and temperature optimization, a 4.4-fold increase in A. ibericus lipase was achieved (90.5 ± 1.5 U g(-1) ), using a mixture of OP and WB at 1:1 ratio, 0.02 g NaNO3 g(-1) dry substrate, absence of Czapek nutrients, 60% of MC and incubation at 30 °C for 7 days. For A. niger and A. tubingensis, highest lipase activity obtained was 56.6 ± 5.4 and 7.6 ± 0.6 U g(-1) , respectively. CONCLUSION: Aspergillus ibericus was found to be the most promising microorganism for lipase production using mixtures of OP and WB. © 2015 Society of Chemical Industry.


Subject(s)
Aspergillus/enzymology , Fermentation , Lipase/biosynthesis , Olea , Dietary Fiber , Industrial Microbiology , Industrial Waste
16.
J Agric Food Chem ; 63(42): 9306-14, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26165254

ABSTRACT

Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.01. For that, two factorial designs (3(2)) were first planned to optimize substrate composition, temperature, and initial moisture level. Subsequently, the kinectics of cellulolytic enzyme production, fungal growth, and fermented solid were characterized. Finally, the process was performed in a packed-bed bioreactor. The results showed that cellulase activity improved with the optimization processes, reaching 33.56 U/g, and with the packed-bed bioreactor aeration of 0.2 L/min, reaching 38.51 U/g. The composition of fermented solids indicated their potential use for animal feed because cellulose, hemicellulose, lignin, and phenolic compounds were partially degraded 28.08, 10.78, 13.3, and 28.32%, respectively, crude protein was increased from 8.47 to 17.08%, and the mineral contents meet the requirements of main livestock.


Subject(s)
Animal Feed/analysis , Aspergillus/metabolism , Bioreactors/microbiology , Cellulases/metabolism , Industrial Microbiology , Olea/microbiology , Vitis/microbiology , Waste Products/analysis , Animal Feed/microbiology , Animals , Aspergillus/enzymology , Biofuels/analysis , Cellulases/analysis , Fermentation , Fungal Proteins/analysis , Fungal Proteins/metabolism , Lignin/metabolism , Olea/chemistry , Olea/metabolism , Vitis/chemistry , Vitis/metabolism
17.
Phytochem Anal ; 26(1): 61-71, 2015.
Article in English | MEDLINE | ID: mdl-25196992

ABSTRACT

INTRODUCTION: Plants from the Lamiaceae family have been known traditionally for their beneficial health-promoting properties, attributed to their anti-inflammatory, anaesthetic and anti-microbial effects. OBJECTIVE: The purposes of this study was to characterise the essential oils from four Lamiaceae plants by applying different extraction techniques. METHODS: Accelerated solvent (ASE), Soxhlet and supercritical fluid (SFE) extraction methods were compared for their efficiency in obtaining the essential oils from plants. The volatile compounds were identified by GC-MS and the main chemotype was quantified by GC with flame ionisation detection (FID). Phenolic compounds were identified and quantified by HPLC and electrospray ionisation (ESI) with MS/MS. RESULTS: The essential oils Mentha piperita (ct. menthol/menthone), Rosmarinus officinalis L. (ct. eucalyptol/camphor) and Origanum vulgare (ct. carvacrol/thymol), whereas Thymus vulgaris L. was found to be a pure chemotype (ct. thymol). All three extracts also contained six phenolic compounds. The highest extraction yields were achieved by the Soxhlet and ASE techniques, with M. piperita and R. officinalis L. producing the highest concentrations of rosmarinic and carnosic acids. Finally, it was observed that M. piperita and O. vulgare produced the highest total phenolic content, whereas R. officinalis L. and T. vulgaris L. produced the highest anti-oxidant activity. CONCLUSION: The ASE and Soxhlet extraction techniques presented the highest yields of volatile and phenolic compounds, showing their suitability to characterise the chemical profile of aromatic plants.


Subject(s)
Lamiaceae/chemistry , Oils, Volatile/isolation & purification , Phenols/isolation & purification , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/isolation & purification , Chromatography, High Pressure Liquid , Chromatography, Supercritical Fluid , Gas Chromatography-Mass Spectrometry , Molecular Structure , Oils, Volatile/analysis , Oils, Volatile/chemistry , Phenols/analysis , Phenols/chemistry , Solvents , Tandem Mass Spectrometry
18.
Enzyme Microb Technol ; 58-59: 22-8, 2014 May 10.
Article in English | MEDLINE | ID: mdl-24731821

ABSTRACT

In situ extractive fermentation was used to produce 4-vinyl derivatives from hydroxycinnamic acids extracted from corn cobs by recombinant Escherichia coli cells expressing Lactobacillus plantarum phenolic acid descarboxylase (PAD) gene. This microorganism mainly produced 4-vinylphenol (4VP) from p-coumaric acid (p-CA). In the first study , we observed that the concentrations of 4VP are higher than 1g/L which had a negative impact on decarboxylation of p-CA to 4VP by recombinant E. coli cells. Because of this, and in order to improve the downstream process, a two-phase aqueous-organic solvent system was developed. The results of the extractive fermentation indicated that it was possible to use hydrolyzates as aqueous phase to bioproduce 4VP, and recover simultaneously the product in the organic phase containing hexane. The detoxification of pre-treated corn cob alkaline hydrolyzate improved 4VP production up to 1003.5mg/L after 24h fermentation (QP=41.813mg/Lh). Additionally, preliminary experiments using cells immobilized in calcium alginate showed to be a good system for the biotransform of p-CA to 4VP in extractive fermentation, although the process hindered partially the recovery of 4VP in the organic phase.


Subject(s)
Bacterial Proteins/metabolism , Carboxy-Lyases/metabolism , Cells, Immobilized/metabolism , Coumaric Acids/metabolism , Escherichia coli/metabolism , Fermentation , Lactobacillus plantarum/enzymology , Phenols/isolation & purification , Zea mays/metabolism , Alginates , Chromatography, Gas , Chromatography, High Pressure Liquid/methods , Culture Media , Formates , Glucuronic Acid , Hexuronic Acids , Hydrogen-Ion Concentration , Hydrolysis , Lactobacillus plantarum/genetics , Methanol , Microspheres , Phenols/metabolism , Propionates , Recombinant Proteins/metabolism , Solvents
19.
Appl Biochem Biotechnol ; 172(4): 1832-45, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24276916

ABSTRACT

Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49, and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett-Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea, and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (3(2)) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25 % of EGM) achieve 18.67 U/g of lipolytic activity.


Subject(s)
Aspergillus/metabolism , Fermentation/physiology , Industrial Microbiology/methods , Lipase/metabolism , Olea/microbiology
20.
Food Technol Biotechnol ; 52(4): 391-402, 2014 Dec.
Article in English | MEDLINE | ID: mdl-27904312

ABSTRACT

Phenolic compounds (benzoic and cinnamic acid derivatives) were determined by high-performance liquid chromatography with multiple wavelength detector (HPLC- -MWD) in grape marc distillates aged in Quercus petraea, Quercus robur and Quercus alba wooden barrels. In addition to colour indices and evaluable polyphenols, all samples were described by sensorial analysis. There were significant differences in the mean concentrations of the majority of phenolic compounds among the samples. Gallic and benzoic acids were the most abundant and samples aged in Q. robur from Galicia (NW of Spain) had the highest concentration of most of the determined phenols. Grape marc distillates aged in Q. robur obtained the highest values of all sensorial attributes, whereas samples aged in Q. petraea and Q. alba obtained similar scores. Principal component analysis accounted for 88.32% of total variance, showing a good separation of aged distillates in terms of phenolic compounds and colour characteristics, according to the species and origin of the oak wood used in the ageing process.

SELECTION OF CITATIONS
SEARCH DETAIL