Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
3.
Hum Pathol ; 137: 71-78, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37127078

ABSTRACT

ALK-negative anaplastic large cell lymphoma (ALCL) cases with 6p25.3 rearrangement are characterized by peculiar morphological and immunohistochemical features compare to 6p25.3-negative ALK-negative ALCL cases. A subgroup of 6p25.3-positive ALK-negative ALCL cases show the t(6,7) (p25.3;q32.3) rearrangement. Aims: To analyse the differences between 6p25.3-rearranged cases with and without t(6,7) (p25.3;q32.3). Using RNA-sequencing we studied a series of 17 samples showing 6p25.3-rearrangement, identified by FISH, consisting of seven systemic and eight primary cutaneous cases including two examples of secondary skin involvement by systemic ALCL. RNA-sequencing exclusively detected a translocation involving a gene in the 6p25.3 region (either IRF4 or DUSP22) in 7/14 cases (50%). In six of these seven cases the partner proved to be the LINC-PINT region in chromosome 7, while an EXOC2::DUSP22 rearrangement was found in one case. All cases but one were primary cutaneous ALCLs. They all were CD3 positive and BCL2 negative, while most of them expressed p-STAT3. On the contrary, cases without the t(6,7) (p25.3;q32.3) were mainly systemic (71%, 5/7) against just two pcALCL. In general, they lose CD3 (50% positive) and p-STAT3 (25% positive) expression, being all of them BCL2 positive. Moreover, in 60% of them other gene fusions were found. At the transcriptional level, they were characterized by the overexpression of TCF3 (TCF7L1/E2A), DLL3, CD58 and BCL2 genes 75%(6/8) of pcALCL with 6p25.3 rearrangement featured the so-called "biphasic morphologic pattern, which was not found in cutaneous involvement from systemic ALCL. 83% (5/6) of the pcALCL cases with the "biphasic morphologic pattern" showed the t(6,7) (p25.3;q32.3) rearrangement. ALK-negative ALCL cases with 6p25.3 rearrangement are a subgroup of tumours that are heterogeneous with respect to the presence or absence of the t(6,7) (p25.3;q32.3) translocation.


Subject(s)
Lymphoma, Large-Cell, Anaplastic , Humans , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/pathology , Translocation, Genetic , Receptor Protein-Tyrosine Kinases/genetics , RNA , Proto-Oncogene Proteins c-bcl-2/genetics , Membrane Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics
4.
Cancers (Basel) ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36765901

ABSTRACT

The familial occurrence of hematological malignancies has been underappreciated. Recent studies suggest that up to 15% of adults with myeloid neoplasms carry germline pathogenic variants in cancer-predisposing genes. This study aimed to identify the underlying germline predisposition variant in patients with a strong family or personal onco-hematological history using whole exome sequencing on sixteen uncharacterized individuals. It was carried out in two groups of patients, one with samples available from two affected relatives (Cohort A) and one with available samples from the index case (Cohort B). In Cohort A, six families were characterized. Two families shared variants in genes associated with DNA damage response and involved in cancer development (CHEK2 and RAD54L). Pathogenic or likely pathogenic germline variants were also found in novel candidate genes (NFATC2 and TC2N). In two families, any relevant pathogenic or likely pathogenic genomic variants were identified. In Cohort B, four additional index cases were analyzed. Three of them harbor clinically relevant variants in genes with a probable role in the development of inherited forms of hematological malignancies (GATA1, MSH4 and PRF1). Overall, whole exome sequencing is a useful approach to achieve a further characterization of these patients and their mutational spectra. Moreover, further investigations may help improve optimization for disease management of affected patients and their families.

5.
Am J Surg Pathol ; 46(12): 1623-1632, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36001453

ABSTRACT

Cutaneous lesions in the setting of myeloproliferative neoplasms and myelodysplastic syndromes are poorly understood. We report 6 patients with pruritic papular eruptions composed of mature T-lymphocytes with large clusters of CD123-positive cells. Double immunohistochemical studies demonstrated a lack of myeloid cell nuclear differentiation antigen in the CD123-positive cells, which expressed SPIB, confirming that they were mature plasmacytoid dendritic cells. Four patients were diagnosed with chronic myelomonocytic leukemia and 2 with myelodysplastic syndromes (AREB-I and myelodysplastic syndromes with 5q deletion, respectively). All patients had a long history of hematological alterations, mainly thrombocytopenia, preceding the cutaneous disorder. Nevertheless, the skin lesions developed in all cases coincidentally with either progression or full-establishment of their hematological disease. Most cutaneous lesions disappeared spontaneously or after corticosteroid treatment. Molecular studies performed in both bone marrow and cutaneous lesions in 2 patients demonstrated the same mutational profile, confirming the specific, neoplastic nature of these mature plasmacytoid dendritic cells-composed cutaneous lesions.


Subject(s)
Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Myeloproliferative Disorders , Skin Diseases , Skin Neoplasms , Humans , Interleukin-3 Receptor alpha Subunit , Myeloproliferative Disorders/complications , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Dendritic Cells/pathology , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/pathology , Leukemia, Myelomonocytic, Chronic/pathology , Skin Diseases/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology
6.
Cancers (Basel) ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35954380

ABSTRACT

Chromothripsis (cth) has been associated with a dismal outcome and poor prognosis factors in patients with chronic lymphocytic leukemia (CLL). Despite being correlated with high genome instability, previous studies have not assessed the role of cth in the context of genomic complexity. Herein, we analyzed a cohort of 33 CLL patients with cth and compared them against a cohort of 129 non-cth cases with complex karyotypes. Nine cth cases were analyzed using optical genome mapping (OGM). Patterns detected by genomic microarrays were compared and the prognostic value of cth was analyzed. Cth was distributed throughout the genome, with chromosomes 3, 6 and 13 being those most frequently affected. OGM detected 88.1% of the previously known copy number alterations and several additional cth-related rearrangements (median: 9, range: 3-26). Two patterns were identified: one with rearrangements clustered in the region with cth (3/9) and the other involving both chromothriptic and non-chromothriptic chromosomes (6/9). Cases with cth showed a shorter time to first treatment (TTFT) than non-cth patients (median TTFT: 2 m vs. 15 m; p = 0.013). However, when stratifying patients based on TP53 status, cth did not affect TTFT. Only TP53 maintained its significance in the multivariate analysis for TTFT, including cth and genome complexity defined by genomic microarrays (HR: 1.60; p = 0.029). Our findings suggest that TP53 abnormalities, rather than cth itself, underlie the poor prognosis observed in this subset.

7.
EJHaem ; 3(1): 171-174, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35846201

ABSTRACT

We report a patient initially diagnosed with a triple hit high-grade B cell lymphoma (HGBL-TH), in which further morphologic, immunohistochemical, and next-generation sequencing studies of subsequent specimens disclosed it to be a germinal center diffuse large B cell lymphoma (GC-DLBCL) with BCL2/BCL6 gene translocations, PVT1-deletion, and gain of MYC genes evolving from a previous follicular lymphoma. However, fluorescence in situ hybridization (FISH) studies with the break-apart probe for MYC gene showed a fusion and two separated signals (red and green, respectively) leading to the interpretation of MYC gene translocation and a false diagnosis of a TH-lymphoma, according to the recent WHO classification. Nevertheless, PVT1 deletion plus MYC gain/amplification has been described as a cause of the double-hi transcription profile. These data highlight the need for new criteria to identify these highly aggressive lymphomas.

8.
Haematologica ; 107(3): 593-603, 2022 03 01.
Article in English | MEDLINE | ID: mdl-33691382

ABSTRACT

Genome complexity has been associated with poor outcome in patients with chronic lymphocytic leukemia (CLL). Previous cooperative studies established five abnormalities as the cut-off that best predicts an adverse evolution by chromosome banding analysis (CBA) and genomic microarrays (GM). However, data comparing risk stratification by both methods are scarce. Herein, we assessed a cohort of 340 untreated CLL patients highly enriched in cases with complex karyotype (CK) (46.5%) with parallel CBA and GM studies. Abnormalities found by both techniques were compared. Prognostic stratification in three risk groups based on genomic complexity (0-2, 3- 4 and ≥5 abnormalities) was also analyzed. No significant differences in the percentage of patients in each group were detected, but only a moderate agreement was observed between methods when focusing on individual cases (κ=0.507; P<0.001). Discordant classification was obtained in 100 patients (29.4%), including 3% classified in opposite risk groups. Most discrepancies were technique-dependent and no greater correlation in the number of abnormalities was achieved when different filtering strategies were applied for GM. Nonetheless, both methods showed a similar concordance index for prediction of time to first treatment (TTFT) (CBA: 0.67 vs. GM: 0.65) and overall survival (CBA: 0.55 vs. GM: 0.57). High complexity maintained its significance in the multivariate analysis for TTFT including TP53 and IGHV status when defined by CBA (hazard ratio [HR] 3.23; P<0.001) and GM (HR 2.74; P<0.001). Our findings suggest that both methods are useful but not equivalent for risk stratification of CLL patients. Validation studies are needed to establish the prognostic value of genome complexity based on GM data in future prospective studies.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Chromosome Aberrations , Chromosome Banding , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Prognosis , Risk Assessment
10.
Mol Ther Methods Clin Dev ; 22: 66-75, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34485595

ABSTRACT

Difficulties in the collection of hematopoietic stem and progenitor cells (HSPCs) from Fanconi anemia (FA) patients have limited the gene therapy in this disease. We have investigated (ClinicalTrials.gov, NCT02931071) the safety and efficacy of filgrastim and plerixafor for mobilization of HSPCs and collection by leukapheresis in FA patients. Nine of eleven enrolled patients mobilized beyond the threshold level of 5 CD34+ cells/µL required to initiate apheresis. A median of 21.8 CD34+ cells/µL was reached at the peak of mobilization. Significantly, the oldest patients (15 and 16 years old) were the only ones who did not reach that threshold. A median of 4.27 million CD34+ cells/kg was collected in 2 or 3 aphereses. These numbers were markedly decreased to 1.1 million CD34+ cells/kg after immunoselection, probably because of weak expression of the CD34 antigen. However, these numbers were sufficient to facilitate the engraftment of corrected HSPCs in non-conditioned patients. No procedure-associated serious adverse events were observed. Mobilization of CD34+ cells correlated with younger age, higher leukocyte counts and hemoglobin values, lower mean corpuscular volume, and higher proportion of CD34+ cells in bone marrow (BM). All these values offer crucial information for the enrollment of FA patients for gene therapy protocols.

11.
PLoS One ; 15(11): e0241634, 2020.
Article in English | MEDLINE | ID: mdl-33180881

ABSTRACT

AIM: Lymphoplasmacytic lymphoma (LPL) is an indolent mature B-cell-neoplasm with involvement of the bone marrow. At least 90% of LPLs carry MYD88-L265P mutation and some of them (~10%) transform into diffuse large B-cell-lymphoma (DLBCL). MATERIAL AND METHODS: Over the past 15 years we have collected 7 cases where the both LPL and DLBCL were diagnosed in the same patient. Clinical records, analytical data and histopathological specimens were reviewed. FISH studies on paraffin-embedded tissue for MYC, BCL2 and BCL6 genes were performed, as well as MYD88-L265P mutation and IGH rearrangement analysis by PCR. A mutational study was done by massive next generation sequencing (NGS). RESULTS: There were 4 women and 3 men between 36-91 years of age. Diagnoses were made simultaneously in 4 patients. In two cases the LPL appeared before the DLBCL and in the remaining case the high-grade component was discovered 5 years before the LPL. In 6 cases both samples shared the MYD88-L265P mutation. IGH rearrangement analysis showed overlapping features in two of 6 cases tested. Mutational study was evaluable in three cases for both samples showing shared and divergent mutations. CONCLUSIONS: These data suggest different mechanisms of DLBCL development in LPL patients.


Subject(s)
Genetic Heterogeneity , Lymphoma, Large B-Cell, Diffuse/genetics , Adult , Aged , Aged, 80 and over , Clonal Evolution , Disease Progression , Female , Gene Rearrangement, B-Lymphocyte, Heavy Chain , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Mutation, Missense , Myeloid Differentiation Factor 88/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-myc/genetics
14.
Am J Dermatopathol ; 42(5): 360-363, 2020 May.
Article in English | MEDLINE | ID: mdl-31592861

ABSTRACT

Cutaneous eruption of lymphocyte recovery (ELR) during bone marrow (BM) aplasia recovery after intensive chemotherapy has been reported in very few patients. The presence of skin rashes in patients with acute leukemia who are undergoing intensive chemotherapy and BM transplantation is a diagnostic challenge because of the clinical similarity between drug eruptions, infiltrates related to the relapse of the underlying disease, cutaneous graft-versus-host disease, and ELR. IDH1 mutations have been identified as a recurrent genetic anomaly in acute myeloid leukemia and myelodysplastic syndromes. However, until now, this IDH1 mutation has not been reported as being shared by myeloid cells and non-neoplastic inflammatory cells in this clinical setting. Here, we present the rare case of a woman diagnosed with myelodysplastic syndrome that evolved into an acute myelogenous leukemia with leukemic cutaneous infiltrate. The patient developed ELR after the intensive chemotherapy administered before BM transplantation. The IDH1 mutation was identified in BM cells and in myeloid and inflammatory cells in skin biopsies before allogeneic BM transplantation. We discuss the main aspects of the differential diagnosis of these cutaneous reactions in leukemic patients and the biological significance of the IDH1 mutation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Drug Eruptions/pathology , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Aged , Cytarabine/adverse effects , Female , Humans , Idarubicin/adverse effects , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology
15.
Nat Med ; 25(9): 1396-1401, 2019 09.
Article in English | MEDLINE | ID: mdl-31501599

ABSTRACT

Fanconi anemia (FA) is a DNA repair syndrome generated by mutations in any of the 22 FA genes discovered to date1,2. Mutations in FANCA account for more than 60% of FA cases worldwide3,4. Clinically, FA is associated with congenital abnormalities and cancer predisposition. However, bone marrow failure is the primary pathological feature of FA that becomes evident in 70-80% of patients with FA during the first decade of life5,6. In this clinical study (ClinicalTrials.gov, NCT03157804 ; European Clinical Trials Database, 2011-006100-12), we demonstrate that lentiviral-mediated hematopoietic gene therapy reproducibly confers engraftment and proliferation advantages of gene-corrected hematopoietic stem cells (HSCs) in non-conditioned patients with FA subtype A. Insertion-site analyses revealed the multipotent nature of corrected HSCs and showed that the repopulation advantage of these cells was not due to genotoxic integrations of the therapeutic provirus. Phenotypic correction of blood and bone marrow cells was shown by the acquired resistance of hematopoietic progenitors and T lymphocytes to DNA cross-linking agents. Additionally, an arrest of bone marrow failure progression was observed in patients with the highest levels of gene marking. The progressive engraftment of corrected HSCs in non-conditioned patients with FA supports that gene therapy should constitute an innovative low-toxicity therapeutic option for this life-threatening disorder.


Subject(s)
Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia/therapy , Genetic Therapy , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Bone Marrow Cells/cytology , Child , Child, Preschool , Fanconi Anemia/genetics , Fanconi Anemia/physiopathology , Female , Genetic Vectors/genetics , Hematopoietic Stem Cells/metabolism , Humans , Infant , Lentivirus/genetics , Male , Mutation/genetics , Spain/epidemiology , Targeted Gene Repair , Transduction, Genetic , Young Adult
16.
Oncotarget ; 8(33): 54297-54303, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28903342

ABSTRACT

Genomic complexity identified by chromosome banding analysis (CBA) predicts a worse clinical outcome in CLL patients treated either with standard or new treatments. Herein, we analyzed the clinical impact of complex karyotypes (CK) with or without high-risk FISH deletions (ATM and/or TP53, HR-FISH) in a cohort of 1045 untreated MBL/CLL patients. In all, 99/1045 (9.5%) patients displayed a CK. Despite ATM and TP53 deletions were more common in CK (25% vs 7%; P < 0.001; 40% vs 5%; P < 0.001, respectively), only 44% (40/90) patients with TP53 deletions showed a CK. CK group showed a significant higher two-year cumulative incidence of treatment (48% vs 20%; P < 0.001), as well as a shorter overall survival (OS) (79 mo vs not reached; P < 0.001). When patients were categorized regarding CK and HR-FISH, those with both characteristics showed the worst median OS (52 mo) being clearly distinct from those non-CK and non-HR-FISH (median not reached), but no significant differences were detected between cases with only CK or HR-FISH. Both CK and TP53 deletion remained statistically significant in the multivariate analysis for OS. In conclusion, CK group is globally associated with advanced disease and poor prognostic markers. Further investigation in larger cohorts with CK lacking HR-FISH is needed to elucidate which mechanisms underlie the poor outcome of this subgroup.

17.
PLoS One ; 12(7): e0181366, 2017.
Article in English | MEDLINE | ID: mdl-28704552

ABSTRACT

Patched homolog 1 gene (PTCH1) expression and the ratio of PTCH1 to Smoothened (SMO) expression have been proposed as prognostic markers of the response of chronic myeloid leukemia (CML) patients to imatinib. We compared these measurements in a realistic cohort of 101 patients with CML in chronic phase (CP) using a simplified qPCR method, and confirmed the prognostic power of each in a competing risk analysis. Gene expression levels were measured in peripheral blood samples at diagnosis. The PTCH1/SMO ratio did not improve PTCH1 prognostic power (area under the receiver operating characteristic curve 0.71 vs. 0.72). In order to reduce the number of genes to be analyzed, PTCH1 was the selected measurement. High and low PTCH1 expression groups had significantly different cumulative incidences of imatinib failure (IF), which was defined as discontinuation of imatinib due to lack of efficacy (5% vs. 25% at 4 years, P = 0.013), probabilities of achieving a major molecular response (81% vs. 53% at first year, P = 0.02), and proportions of early molecular failure (14% vs. 43%, P = 0.015). Every progression to an advanced phase (n = 3) and CML-related death (n = 2) occurred in the low PTCH1 group (P<0.001 for both comparisons). PTCH1 was an independent prognostic factor for the prediction of IF. We also validated previously published thresholds for PTCH1 expression. Therefore, we confirmed that PTCH1 expression can predict the imatinib response in CML patients in CP by applying a more rigorous statistical analysis. Thus, PTCH1 expression is a promising molecular marker for predicting the imatinib response in CML patients in CP.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/physiology , Imatinib Mesylate/therapeutic use , Leukemia, Myeloid, Chronic-Phase/drug therapy , Patched-1 Receptor/physiology , Adult , Aged , Aged, 80 and over , Biomarkers, Pharmacological , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Leukemia, Myeloid, Chronic-Phase/diagnosis , Leukemia, Myeloid, Chronic-Phase/genetics , Male , Middle Aged , Prognosis , Retrospective Studies , Treatment Outcome , Young Adult
18.
Mol Cancer ; 15(1): 53, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27457246

ABSTRACT

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and frequently progresses from an actinic keratosis (AK), a sun-induced keratinocyte intraepithelial neoplasia (KIN). Epigenetic mechanisms involved in the phenomenon of progression from AK to cSCC remain to be elicited. METHODS: Expression of microRNAs in sun-exposed skin, AK and cSCC was analysed by Agilent microarrays. DNA methylation of miR-204 promoter was determined by bisulphite treatment and pyrosequencing. Identification of miR-204 targets and pathways was accomplished in HaCat cells. Immunofluorescence and immunohistochemistry were used to analyze STAT3 activation and PTPN11 expression in human biopsies. RESULTS: cSCCs display a marked downregulation of miR-204 expression when compared to AK. DNA methylation of miR-204 promoter was identified as one of the repressive mechanisms that accounts for miR-204 silencing in cSCC. In HaCaT cells miR-204 inhibits STAT3 and favours the MAPK signaling pathway, likely acting through PTPN11, a nuclear tyrosine phosphatase that is a direct miR-204 target. In non-peritumoral AK lesions, activated STAT3, as detected by pY705-STAT3 immunofluorescence, is retained in the membrane and cytoplasm compartments, whereas AK lesions adjacent to cSCCs display activated STAT3 in the nuclei. CONCLUSIONS: Our data suggest that miR-204 may act as a "rheostat" that controls the signalling towards the MAPK pathway or the STAT3 pathway in the progression from AK to cSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Gene Expression Profiling/methods , Keratosis, Actinic/genetics , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis/methods , Skin Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , DNA Methylation , Disease Progression , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Keratosis, Actinic/metabolism , Promoter Regions, Genetic , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Sequence Analysis, DNA , Skin Neoplasms/metabolism
19.
Oncotarget ; 6(26): 22375-96, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26090614

ABSTRACT

TREX2 is a 3'-DNA exonuclease specifically expressed in keratinocytes. Here, we investigated the relevance and mechanisms of TREX2 in ultraviolet (UV)-induced skin carcinogenesis. TREX2 expression was up-regulated by chronic UV exposure whereas it was de-regulated or lost in human squamous cell carcinomas (SCCs). Moreover, we identified SNPs in the TREX2 gene that were more frequent in patients with head and neck SCCs than in healthy individuals. In mice, TREX2 deficiency led to enhanced susceptibility to UVB-induced skin carcinogenesis which was preceded by aberrant DNA damage removal and degradation as well as reduced inflammation. Specifically, TREX2 loss diminished the up-regulation of IL12 and IFNγ, key cytokines related to DNA repair and antitumor immunity. In UV-treated keratinocytes, TREX2 promoted DNA repair and passage to late apoptotic stages. Notably, TREX2 was recruited to low-density nuclear chromatin and micronuclei, where it interacted with phosphorylated H2AX histone, which is a critical player in both DNA repair and cell death. Altogether, our data provide new insights in the molecular mechanisms of TREX2 activity and establish cell autonomous and non-cell autonomous functions of TREX2 in the UVB-induced skin response.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Exodeoxyribonucleases/metabolism , Phosphoproteins/metabolism , Skin Neoplasms/enzymology , Ultraviolet Rays/adverse effects , Animals , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/pathology , DNA Damage , Exodeoxyribonucleases/genetics , Female , Humans , Keratinocytes/enzymology , Keratinocytes/radiation effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphoproteins/genetics , Skin Neoplasms/etiology , Skin Neoplasms/pathology
20.
J Invest Dermatol ; 135(4): 1128-1137, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25405321

ABSTRACT

MicroRNAs usually regulate gene expression negatively, and aberrant expression has been involved in the development of several types of cancers. Microarray profiling of microRNA expression was performed to define a microRNA signature in a series of mycosis fungoides tumor stage (MFt, n=21) and CD30+ primary cutaneous anaplastic large cell lymphoma (CD30+ cALCL, n=11) samples in comparison with inflammatory dermatoses (ID, n=5). Supervised clustering confirmed a distinctive microRNA profile for cutaneous T-cell lymphoma (CTCL) with respect to ID. A 40 microRNA signature was found in MFt including upregulated onco-microRNAs (miR-146a, miR-142-3p/5p, miR-21, miR-181a/b, and miR-155) and downregulated tumor-suppressor microRNAs (miR-200ab/429 cluster, miR-10b, miR-193b, miR-141/200c, and miR-23b/27b). Regarding CD30+ cALCL, 39 differentially expressed microRNAs were identified. Particularly, overexpression of miR-155, miR-21, or miR-142-3p/5p and downregulation of the miR-141/200c clusters were observed. DNA methylation in microRNA gene promoters, as expression regulatory mechanism for deregulated microRNAs, was analyzed using Infinium 450K array and approximately one-third of the differentially expressed microRNAs showed significant DNA methylation differences. Two different microRNA methylation signatures for MFt and CD30+ cALCL were found. Correlation analysis showed an inverse relationship for microRNA promoter methylation and microRNA expression. These results reveal a subgroup-specific epigenetically regulated microRNA signatures for MFt and CD30+ cALCL patients.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Lymphoma, T-Cell, Cutaneous/genetics , MicroRNAs/metabolism , Adult , Aged , Cell Line, Tumor , Cluster Analysis , CpG Islands , Female , Gene Expression Profiling , Humans , Ki-1 Antigen/metabolism , Lymphoma, T-Cell, Cutaneous/metabolism , Lymphomatoid Papulosis/genetics , Lymphomatoid Papulosis/metabolism , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/metabolism , Male , Middle Aged , Mycosis Fungoides/genetics , Mycosis Fungoides/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...