Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 22(1): 99, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37170263

ABSTRACT

BACKGROUND: In research and production, reproducibility is a key factor, to meet high quality and safety standards and maintain productivity. For microbial fermentations, complex substrates and media components are often used. The complex media components can vary in composition, depending on the lot and manufacturing process. These variations can have an immense impact on the results of biological cultivations. The aim of this work was to investigate and characterize the influence of the complex media component yeast extract on cultivations of Azotobacter vinelandii under microaerobic conditions. Under these conditions, the organism produces the biopolymer alginate. The focus of the investigation was on the respiration activity, cell growth and alginate production. RESULTS: Yeast extracts from 6 different manufacturers and 2 different lots from one manufacturer were evaluated. Significant differences on respiratory activity, growth and production were observed. Concentration variations of three different yeast extracts showed that the performance of poorly performing yeast extracts can be improved by simply increasing their concentration. On the other hand, the results with well-performing yeast extracts seem to reach a saturation, when their concentration is increased. Cultivations with poorly performing yeast extract were supplemented with grouped amino acids, single amino acids and micro elements. Beneficial results were obtained with the supplementation of copper sulphate, cysteine or a combination of both. Furthermore, a correlation between the accumulated oxygen transfer and the final viscosity (as a key performance indicator), was established. CONCLUSION: The choice of yeast extract is crucial for A. vinelandii cultivations, to maintain reproducibility and comparability between cultivations. The proper use of specific yeast extracts allows the cultivation results to be specifically optimised. In addition, supplements can be applied to modify and improve the properties of the alginate. The results only scratch the surface of the underlying mechanisms, as they are not providing explanations on a molecular level. However, the findings show the potential of optimising media containing yeast extract for alginate production with A. vinelandii, as well as the potential of targeted supplementation of the media.


Subject(s)
Alginates , Amino Acids , Alginates/chemistry , Reproducibility of Results , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Hexuronic Acids/metabolism
2.
AMB Express ; 11(1): 177, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34958440

ABSTRACT

This study aimed to evaluate the growth, respiratory activity, and biodegradation of chlorpyrifos in cultures of Azotobacter vinelandii ATCC 12837. A strategy based on the modification of culture media and aeration conditions was carried out to increase the cell concentration of A. vinelandii, in order to favor and determine its tolerance to chlorpyrifos and its degradation ability. The culture in shaken flasks, using sucrose as a carbon source, significantly improved the growth compared to media with mannitol. When the strain was cultivated under oxygen-limited (5.5, 11.25 mmol L-1 h-1) and no-oxygen-limited conditions (22 mmol L-1 h-1), the growth parameters were not affected. In cultures in a liquid medium with chlorpyrifos, the bacteria tolerated a high pesticide concentration (500 ppm) and the growth parameters were improved even under conditions with a reduced carbon source (sucrose 2 g L-1). The strain degraded 99.6% of chlorpyrifos at 60 h of cultivation, in co-metabolism with sucrose; notably, A. vinelandii ATCC 12837 reduced by 50% the initial pesticide concentration in only 6 h (DT50).

3.
Appl Biochem Biotechnol ; 193(1): 79-95, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32813183

ABSTRACT

Poly-3-hydroxybutyrate (P3HB) is a biopolymer, which presents characteristics similar to those of plastics derived from the petrochemical industry. The thermomechanical properties and biodegradability of P3HB are influenced by its molecular weight (MW). The aim of the present study was to evaluate the changes of the molecular weight of P3HB as a function of oxygen transfer rate (OTR) in the cultures using two strains of Azotobacter vinelandii, a wild-type strain OP, and PhbZ1 mutant with a P3HB depolymerase inactivated. Both strains were grown in a bioreactor under different OTR conditions. An inverse relationship was found between the average molecular weight of P3HB and the OTRmax, obtaining a polymer with a maximal MW (8000-10,000 kDa) from the cultures developed at OTRmax of 5 mmol L-1 h-1 using both strains, with respect to the cultures conducted at 8 and 11 mmol L-1 h-1, which produced a P3HB between 4000 and 5000 kDa. The increase in MW of P3HB was related to the activity of enzymes involved in the synthesis and depolymerization. Overall, our results show that it is possible to modulate the average molecular weight of P3HB by manipulating oxygen transfer conditions with both strains (OP and PhbZ1 mutant) of A. vinelandii.


Subject(s)
Azotobacter vinelandii , Bioreactors , Hydroxybutyrates/metabolism , Mutation , Polyesters/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/growth & development , Molecular Weight
4.
Fungal Genet Biol ; 97: 10-17, 2016 12.
Article in English | MEDLINE | ID: mdl-27777036

ABSTRACT

Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly.


Subject(s)
Chitin Synthase/biosynthesis , Chitin/biosynthesis , Rhizopus/enzymology , Arginine/chemistry , Chitin/genetics , Chitin Synthase/genetics , Escherichia coli/genetics , Gene Expression Regulation, Fungal , Rhizopus/genetics , Urea/chemistry
5.
New Phytol ; 207(3): 769-77, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25754368

ABSTRACT

We observed that the maize pathogenic fungus Ustilago maydis grew in nitrogen (N)-free media at a rate similar to that observed in media containing ammonium nitrate, suggesting that it was able to fix atmospheric N2 . Because only prokaryotic organisms have the capacity to reduce N2 , we entertained the possibility that U. maydis was associated with an intracellular bacterium. The presence of nitrogenase in the fungus was analyzed by acetylene reduction, and capacity to fix N2 by use of (15) N2 . Presence of an intracellular N2 -fixing bacterium was analyzed by PCR amplification of bacterial 16S rRNA and nifH genes, and by microscopic observations. Nitrogenase activity and (15) N incorporation into the cells proved that U. maydis fixed N2 . Light and electron microscopy, and fluorescence in situ hybridization (FISH) experiments revealed the presence of intracellular bacteria related to Bacillus pumilus, as evidenced by sequencing of the PCR-amplified fragments. These observations reveal for the first time the existence of an endosymbiotic N2 -fixing association involving a fungus and a bacterium.


Subject(s)
Bacillus/physiology , Intracellular Space/microbiology , Nitrogen Fixation , Symbiosis , Ustilago/physiology , Acetylene/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus/drug effects , Electrophoresis, Agar Gel , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Nitrogen/pharmacology , Nitrogen Isotopes , Nitrogenase/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Symbiosis/drug effects , Ustilago/drug effects , Ustilago/growth & development , Ustilago/ultrastructure
6.
Proteins ; 82(1): 22-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23733417

ABSTRACT

We report the structures and thermodynamic analysis of the unfolding of two triosephosphate isomerases (TvTIM1 and TvTIM2) from Trichomonas vaginalis. Both isoforms differ by the character of four amino acids: E/Q 18, I/V 24, I/V 45, and P/A 239. Despite the high sequence and structural similarities between both isoforms, they display substantial differences in their stabilities. TvTIM1 (E18, I24, I45, and P239) is more stable and less dissociable than TvTIM2 (Q18, V24, V45, and A239). We postulate that the identities of residues 24 and 45 are responsible for the differences in monomer stability and dimer dissociability, respectively. The structural difference between both amino acids is one methyl group. In TvTIMs, residue 24 is involved in packing α-helix 1 against α-helix 2 of each monomer and residue 45 is located at the center of the dimer interface forming a "ball and socket" interplay with a hydrophobic cavity. The mutation of valine at position 45 for an alanine in TvTIM2 produces a protein that migrates as a monomer by gel filtration. A comparison with known TIM structures indicates that this kind of interplay is a conserved feature that stabilizes dimeric TIM structures. In addition, TvTIMs are located in the cytoplasm and in the membrane. As TvTIM2 is an easily dissociable dimer, the dual localization of TvTIMs may be related to the acquisition of a moonlighting activity of monomeric TvTIM2. To our knowledge, this is the simplest example of how a single amino acid substitution can provide alternative function to a TIM barrel protein.


Subject(s)
Gene Duplication/genetics , Models, Molecular , Mutation/genetics , Protein Folding , Trichomonas vaginalis/enzymology , Triose-Phosphate Isomerase/chemistry , Amino Acid Substitution/genetics , Chromatography, Gel , Circular Dichroism , Crystallization , DNA Primers/genetics , Dimerization , Fluorescent Antibody Technique, Indirect , Isoenzymes/chemistry , Isoenzymes/genetics , Protein Conformation , Protein Stability , Spectrometry, Fluorescence , Thermodynamics , Triose-Phosphate Isomerase/genetics
7.
Parasitology ; 139(13): 1729-38, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22931930

ABSTRACT

The glycolytic enzyme triosephosphate isomerase catalyses the isomerization between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Here we report that Trichomonas vaginalis contains 2 fully functional tpi genes. Both genes are located in separated chromosomal context with different promoter regulatory elements and encode ORFs of 254 amino acids; the only differences between them are the character of 4 amino acids located in α-helices 1, 2 and 8. Semi-quantitative RT-PCR assays showed that tpi2 transcript is approximately 3·3-fold more abundant than tpi1. Using an anti-TvTIM2 polyclonal antibody it was demonstrated that TIM proteins have a cytoplasmic localization and both enzymes are able to complement an Escherichia coli strain carrying a deletion of its endogenous tpi gene. Both TIM proteins assemble as dimers and their secondary structure assessment is essentially identical to TIM from Saccharomyces cerevisiae. The kinetic catalytic constants of the recombinant enzymes using glyceraldehyde-3-phosphate as substrate are similar to the catalytic constants of TIMs from other organisms including parasitic protozoa. As T. vaginalis depends on glycolysis for ATP production, we speculate 2 possible reasons to maintain a duplicated tpi copy on its genome: an increase in gene dosage or an early event of neofunctionalization of TIM as a moonlighting protein.


Subject(s)
Trichomonas vaginalis/enzymology , Trichomonas vaginalis/genetics , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism , Amino Acid Sequence , Base Sequence , Cytoplasm/enzymology , Escherichia coli/genetics , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Genetic Complementation Test , Models, Molecular , Molecular Sequence Data , Open Reading Frames , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Triose-Phosphate Isomerase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...