Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 110(13): 135302, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581333

ABSTRACT

We study the response of ultracold atoms to a weak force in the presence of a temporally strongly modulated optical lattice potential. It is experimentally demonstrated that the strong ac driving allows for a tailoring of the mobility of a dilute atomic Bose-Einstein condensate with the atoms moving ballistically either along or against the direction of the applied force. Our results are in agreement with a theoretical analysis of the Floquet spectrum of a model system, thus revealing the existence of diabatic Floquet bands in the atoms' band spectra and highlighting their role in the nonequilibrium transport of the atoms.

2.
Phys Rev Lett ; 107(24): 240401, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22242978

ABSTRACT

A proof-of-principle experiment simulating effects predicted by relativistic wave equations with ultracold atoms in a bichromatic optical lattice that allows for a tailoring of the dispersion relation is reported. We observe the analog of Klein tunneling, the penetration of relativistic particles through a potential barrier without the exponential damping that is characteristic for nonrelativistic quantum tunneling. Both linear (relativistic) and quadratic (nonrelativistic) dispersion relations are investigated, and significant barrier transmission is observed only for the relativistic case.

3.
Phys Rev Lett ; 105(21): 215301, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21231316

ABSTRACT

We report on experiments investigating quantum transport and band interferometry of an atomic Bose-Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase between paths in different bands is varied, an interference signal is observed, demonstrating the coherence of the dynamics in the miniband system. Measured fringe patterns of this Stückelberg interferometer allow us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone.

4.
Science ; 326(5957): 1241-3, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-19965469

ABSTRACT

Classical ratchet potentials, which alternate a driving potential with periodic random dissipative motion, can account for the operation of biological motors. We demonstrate the operation of a quantum ratchet, which differs from classical ratchets in that dissipative processes are absent within the observation time of the system (Hamiltonian regime). An atomic rubidium Bose-Einstein condensate is exposed to a sawtooth-like optical lattice potential, whose amplitude is periodically modulated in time. The ratchet transport arises from broken spatiotemporal symmetries of the driven potential, resulting in a desymmetrization of transporting eigenstates (Floquet states). The full quantum character of the ratchet transport was demonstrated by the measured atomic current oscillating around a nonzero stationary value at longer observation times, resonances occurring at positions determined by the photon recoil, and dependence of the transport current on the initial phase of the driving potential.

5.
Phys Rev Lett ; 99(19): 190405, 2007 Nov 09.
Article in English | MEDLINE | ID: mdl-18233052

ABSTRACT

We report on an experimental study of quantum transport of atoms in variable periodic optical potentials. The band structure of both ratchet-type asymmetric and symmetric lattice potentials is explored. The variable atom potential is realized by superimposing a conventional standing wave potential of lambda/2 spatial periodicity with a fourth-order multiphoton potential of lambda/4 periodicity. We find that the Landau-Zener tunneling rate between the first and the second excited Bloch band depends critically on the relative phase between the two spatial lattice harmonics.

SELECTION OF CITATIONS
SEARCH DETAIL
...