Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38865229

ABSTRACT

Developing AI models for digital pathology has traditionally relied on single-scale analysis of histopathology slides. However, a whole slide image is a rich digital representation of the tissue, captured at various magnification levels. Limiting our analysis to a single scale overlooks critical information, spanning from intricate high-resolution cellular details to broad low-resolution tissue structures. In this study, we propose a model-agnostic multiresolution feature aggregation framework tailored for the analysis of histopathology slides in the context of breast cancer, on a multicohort dataset of 2038 patient samples. We have adapted 9 state-of-the-art multiple instance learning models on our multi-scale methodology and evaluated their performance on grade prediction, TP53 mutation status prediction and survival prediction. The results prove the dominance of the multiresolution methodology, and specifically, concatenating or linearly transforming via a learnable layer the feature vectors of image patches from a high (20x) and low (10x) magnification factors achieve improved performance for all prediction tasks across domain-specific and imagenet-based features. On the contrary, the performance of uniresolution baseline models was not consistent across domain-specific and imagenet-based features. Moreover, we shed light on the inherent inconsistencies observed in models trained on whole-tissue-sections when validated against biopsy-based datasets. Despite these challenges, our findings underscore the superiority of multiresolution analysis over uniresolution methods. Finally, cross-scale analysis also benefits the explainability aspects of attention-based architectures, since one can extract attention maps at the tissue- and cell-levels, improving the interpretation of the model's decision. The code and results of this study can be found at github.com/tsikup/multiresolution_histopathology.

2.
NPJ Breast Cancer ; 7(1): 144, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34799582

ABSTRACT

Emerging data indicate that genomic alterations can shape immune cell composition in early breast cancer. However, there is a need for complementary imaging and sequencing methods for the quantitative assessment of combined somatic copy number alteration (SCNA) and immune profiling in pathological samples. Here, we tested the feasibility of three approaches-CUTseq, for high-throughput low-input SCNA profiling, multiplexed fluorescent immunohistochemistry (mfIHC) and digital-image analysis (DIA) for quantitative immuno-profiling- in archival formalin-fixed paraffin-embedded (FFPE) tissue samples from patients enrolled in the randomized SBG-2004-1 phase II trial. CUTseq was able to reproducibly identify amplification and deletion events with a resolution of 100 kb using only 6 ng of DNA extracted from FFPE tissue and pooling together 77 samples into the same sequencing library. In the same samples, mfIHC revealed that CD4 + T-cells and CD68 + macrophages were the most abundant immune cells and they mostly expressed PD-L1 and PD-1. Combined analysis showed that the SCNA burden was inversely associated with lymphocytic infiltration. Our results set the basis for further applications of CUTseq, mfIHC and DIA to larger cohorts of early breast cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...