Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
Adv Mater ; 35(19): e2209708, 2023 May.
Article in English | MEDLINE | ID: mdl-36812299

ABSTRACT

A unique class of advanced materials-quantum composites based on polymers with fillers composed of a van der Waals quantum material that reveals multiple charge-density-wave quantum condensate phases-is demonstrated. Materials that exhibit quantum phenomena are typically crystalline, pure, and have few defects because disorder destroys the coherence of the electrons and phonons, leading to collapse of the quantum states. The macroscopic charge-density-wave phases of filler particles after multiple composite processing steps are successfully preserved in this work. The prepared composites display strong charge-density-wave phenomena even above room temperature. The dielectric constant experiences more than two orders of magnitude enhancement while the material maintains its electrically insulating properties, opening a venue for advanced applications in energy storage and electronics. The results present a conceptually different approach for engineering the properties of materials, extending the application domain for van der Waals materials.

3.
ACS Nano ; 16(11): 18968-18977, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36315105

ABSTRACT

We report on the electrical gating of the charge-density-wave phases and current in h-BN-capped three-terminal 1T-TaS2 heterostructure devices. It is demonstrated that the application of a gate bias can shift the source-drain current-voltage hysteresis associated with the transition between the nearly commensurate and incommensurate charge-density-wave phases. The evolution of the hysteresis and the presence of abrupt spikes in the current while sweeping the gate voltage suggest that the effect is electrical rather than self-heating. We attribute the gating to an electric-field effect on the commensurate charge-density-wave domains in the atomic planes near the gate dielectric. The transition between the nearly commensurate and incommensurate charge-density-wave phases can be induced by both the source-drain current and the electrostatic gate. Since the charge-density-wave phases are persistent in 1T-TaS2 at room temperature, one can envision memory applications of such devices when scaled down to the dimensions of individual commensurate domains and few-atomic plane thicknesses.

4.
Nanoscale ; 14(16): 6133-6143, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35388816

ABSTRACT

We conducted a tip-enhanced Raman scattering spectroscopy (TERS) and photoluminescence (PL) study of quasi-1D TaSe3-δ nanoribbons exfoliated onto gold substrates. At a selenium deficiency of δ ∼ 0.25 (Se/Ta = 2.75), the nanoribbons exhibit a strong, broad PL peak centered around ∼920 nm (1.35 eV), suggesting their semiconducting behavior. Such nanoribbons revealed a strong TERS response under 785 nm (1.58 eV) laser excitation, allowing for their nanoscale spectroscopic imaging. Nanoribbons with a smaller selenium deficiency (Se/Ta = 2.85, δ ∼ 0.15) did not show any PL or TERS response. The confocal Raman spectra of these samples agree with the previously-reported spectra of metallic TaSe3. The differences in the optical response of the nanoribbons examined in this study suggest that even small variations in Se content can induce changes in electronic band structure, causing samples to exhibit either metallic or semiconducting character. The temperature-dependent electrical measurements of devices fabricated with both types of materials corroborate these observations. The density-functional-theory calculations revealed that substitution of an oxygen atom in a Se vacancy can result in band gap opening and thus enable the transition from a metal to a semiconductor. However, the predicted band gap is substantially smaller than that derived from the PL data. These results indicate that the properties of van der Waals materials can vary significantly depending on stoichiometry, defect types and concentration, and possibly environmental and substrate effects. In view of this finding, local probing of nanoribbon properties with TERS becomes essential to understanding such low-dimensional systems.

5.
ACS Nano ; 16(4): 6325-6333, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35324143

ABSTRACT

We report on the preparation of inks containing fillers derived from quasi-two-dimensional charge-density-wave materials, their application for inkjet printing, and the evaluation of their electronic properties in printed thin-film form. The inks were prepared by liquid-phase exfoliation of CVT-grown 1T-TaS2 crystals to produce fillers with nm-scale thickness and µm-scale lateral dimensions. Exfoliated 1T-TaS2 was dispersed in a mixture of isopropyl alcohol and ethylene glycol to allow fine-tuning of filler particles thermophysical properties for inkjet printing. The temperature-dependent electrical and current fluctuation measurements of printed thin films demonstrated that the charge-density-wave properties of 1T-TaS2 are preserved after processing. The functionality of the printed thin-film devices can be defined by the nearly commensurate to the commensurate charge-density-wave phase transition of individual exfoliated 1T-TaS2 filler particles rather than by electron-hopping transport between them. The obtained results are important for the development of printed electronics with diverse functionality achieved by the incorporation of quasi-two-dimensional van der Waals quantum materials.

6.
ACS Nano ; 15(12): 18647-18652, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34850631

ABSTRACT

The "leaky pipeline" of women in science, technology, engineering, and mathematics (STEM), which is especially acute for academic mothers, continues to be problematic as women face continuous cycles of barriers and obstacles to advancing further in their fields. The severity and prevalence of the COVID-19 pandemic both highlighted and exacerbated the unique challenges faced by female graduate students, postdocs, research staff, and principal investigators because of lockdowns, quarantines, school closures, lack of external childcare, and heightened family responsibilities, on top of professional responsibilities. This perspective provides recommendations of specific policies and practices that combat stigmas faced by women in STEM and can help them retain their careers. We discuss actions that can be taken to support women within academic institutions, journals, government/federal centers, university-level departments, and individual research groups. These recommendations are based on prior initiatives that have been successful in having a positive impact on gender equity─a central tenet of our postpandemic vision for the STEM workforce.


Subject(s)
COVID-19 , Pandemics , Communicable Disease Control , Female , Humans , Mathematics , SARS-CoV-2 , Technology
7.
ACS Appl Mater Interfaces ; 13(18): 21527-21533, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33929179

ABSTRACT

We report on the preparation of flexible polymer composite films with aligned metallic fillers composed of atomic chain bundles of quasi-one-dimensional (1D) van der Waals material, tantalum triselenide (TaSe3). The material functionality, embedded at the nanoscale level, is achieved by mimicking the design of an electromagnetic aperture grid antenna. The processed composites employ chemically exfoliated TaSe3 nanowires as the grid building blocks incorporated within the thin film. Filler alignment is achieved using the "blade coating" method. Measurements conducted in the X-band frequency range demonstrate that the electromagnetic transmission through such films can be varied significantly by changing the relative orientations of the quasi-1D fillers and the polarization of the electromagnetic wave. We argue that such polarization-sensitive polymer films with unique quasi-1D metallic fillers are applicable to advanced electromagnetic interference shielding in future communication systems.

8.
Adv Mater ; 33(11): e2007286, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33576041

ABSTRACT

Polymer composite films containing fillers comprising quasi-1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to ≈106 . The polymer composites with low loadings of quasi-1D TaSe3 fillers (<3 vol%) reveal excellent electromagnetic interference shielding in the X-band GHz and extremely high frequency sub-THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high-aspect-ratio electrically conductive TaSe3 atomic-thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high-frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating.

9.
ACS Nano ; 13(6): 7231-7240, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31173685

ABSTRACT

We report on switching among three charge-density-wave phases, commensurate, nearly commensurate, incommensurate, and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane bias voltage. The switching among all phases has been achieved over a wide temperature range, from 77 to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 to 600 K. Analysis of the experimental data and calculations of heat dissipation indicate that Joule heating plays a dominant role in the voltage induced transitions in the 1T-TaS2 devices on Si/SiO2 substrates, contrary to some recent claims. The possibility of the bias-voltage switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in the materials.

10.
Nanoscale ; 10(42): 19749-19756, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30328869

ABSTRACT

We describe the low-frequency current fluctuations, i.e. electronic noise, in quasi-one-dimensional ZrTe3 van der Waals nanoribbons, which have recently attracted attention owing to their extraordinary high current carrying capacity. Whereas the low-frequency noise spectral density, SI/I2, reveals 1/f behavior near room temperature, it is dominated by the Lorentzian bulges of the generation-recombination noise at low temperatures (I is the current and f is the frequency). Unexpectedly, the corner frequency of the observed Lorentzian peaks shows strong sensitivity to the applied source-drain bias. This dependence on electric field can be explained by the Frenkel-Poole effect in the scenario where the voltage drop happens predominantly on the defects, which block the quasi-1D conduction channels. We also have found that the activation energy of the characteristic frequencies of the G-R noise in quasi-1D ZrTe3 is defined primarily by the temperature dependence of the capture cross-section of the defects rather than by their energy position. These results are important for the application of quasi-1D van der Waals materials in ultimately downscaled electronics.

11.
Nano Lett ; 18(6): 3630-3636, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29767986

ABSTRACT

We investigated low-frequency noise in two-dimensional (2D) charge density wave (CDW) systems, 1 T-TaS2 thin films, as they were driven from the nearly commensurate (NC) to incommensurate (IC) CDW phases by voltage and temperature stimuli. This study revealed that noise in 1 T-TaS2 has two pronounced maxima at the bias voltages, which correspond to the onset of CDW sliding and the NC-to-IC phase transition. We observed unusual Lorentzian features and exceptionally strong noise dependence on electric bias and temperature, leading to the conclusion that electronic noise in 2D CDW systems has a unique physical origin different from known fundamental noise types. We argue that noise spectroscopy can serve as a useful tool for understanding electronic transport phenomena in 2D CDW materials characterized by coexistence of different phases and strong pinning.

12.
Inorg Chem ; 57(1): 4-7, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29256604

ABSTRACT

We describe the top-down nanostructuring of a metal boride using SrB6 as an example. To accomplish this transformation, we demonstrate (1) the direct lithiation of a metal boride using n-butyllithium and then (2) the reactive disassembly of Li-SrB6 into nanoparticles using water. The identity of the Li-SrB6 intermediate, a mixture of Li2B6, LixSr1-2xB6, and SrB6 phases, was established by powder X-ray diffraction (PXRD), solid-state 11B and 7Li NMR, transmission electron microscopy, selected-area electron diffraction, and scanning electron microscopy. The necessary 2Li+/Sr2+ substitution is enabled by cation mobility within the hexaboride lattice. The subsequent reaction with water results in Li2B6 decomposition and the release of <100 nm SrB6 nanoparticles, which were characterized by PXRD, solid-state 11B and 7Li NMR, and high-resolution TEM. This chemistry opens new solution-based modification and processing options for metal borides.

13.
Nano Lett ; 17(1): 377-383, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28073263

ABSTRACT

We report results of investigation of the low-frequency electronic excess noise in quasi-1D nanowires of TaSe3 capped with quasi-2D h-BN layers. Semimetallic TaSe3 is a quasi-1D van der Waals material with exceptionally high breakdown current density. It was found that TaSe3 nanowires have lower levels of the normalized noise spectral density, SI/I2, compared to carbon nanotubes and graphene (I is the current). The temperature-dependent measurements revealed that the low-frequency electronic 1/f noise becomes the 1/f2 type as temperature increases to ∼400 K, suggesting the onset of electromigration (f is the frequency). Using the Dutta-Horn random fluctuation model of the electronic noise in metals, we determined that the noise activation energy for quasi-1D TaSe3 nanowires is approximately EP ≈ 1.0 eV. In the framework of the empirical noise model for metallic interconnects, the extracted activation energy, related to electromigration is EA = 0.88 eV, consistent with that for Cu and Al interconnects. Our results shed light on the physical mechanism of low-frequency 1/f noise in quasi-1D van der Waals semimetals and suggest that such material systems have potential for ultimately downscaled local interconnect applications.

14.
Nanoscale ; 8(34): 15774-82, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27531559

ABSTRACT

We report on the current-carrying capacity of the nanowires made from the quasi-1D van der Waals metal tantalum triselenide capped with quasi-2D boron nitride. The chemical vapor transport method followed by chemical and mechanical exfoliation were used to fabricate the mm-long TaSe3 wires with the lateral dimensions in the 20 to 70 nm range. Electrical measurements establish that the TaSe3/h-BN nanowire heterostructures have a breakdown current density exceeding 10 MA cm(-2)-an order-of-magnitude higher than that for copper. Some devices exhibited an intriguing step-like breakdown, which can be explained by the atomic thread bundle structure of the nanowires. The quasi-1D single crystal nature of TaSe3 results in a low surface roughness and in the absence of the grain boundaries. These features can potentially enable the downscaling of the nanowires to lateral dimensions in a few-nm range. Our results suggest that quasi-1D van der Waals metals have potential for applications in the ultimately downscaled local interconnects.

15.
Nat Nanotechnol ; 11(10): 845-850, 2016 10.
Article in English | MEDLINE | ID: mdl-27376243

ABSTRACT

The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe2, 1T-TaS2 and 1T-TiSe2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.

16.
Chemistry ; 21(49): 17560-4, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26482329

ABSTRACT

We describe the first hydrothermal synthesis of CaCuSi4 O10 as micron-scale clusters of thin platelets, distinct from morphologies generated under salt-flux or solid-state conditions. The hydrothermal reaction conditions are surprisingly specific: too cold, and instead of CaCuSi4 O10 , a porous calcium copper silicate forms; too hot, and calcium silicate (CaSiO3 ) forms. The precursors also strongly impact the course of the reaction, with the most common side product being sodium copper silicate (Na2 CuSi4 O10 ). Optimized conditions for hydrothermal CaCuSi4 O10 formation from calcium chloride, copper(II) nitrate, sodium silicate, and ammonium hydroxide are 350 °C at 3000 psi for 72 h; at longer reaction times, competitive delamination and exfoliation causes crystal fragmentation. These results illustrate that CaCuSi4 O10 is an even more unique material than previously appreciated.

17.
J Vis Exp ; (86)2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24796494

ABSTRACT

In a visualized example of the ancient past connecting with modern times, we describe the preparation and exfoliation of CaCuSi4O10 and BaCuSi4O10, the colored components of the historic Egyptian blue and Han blue pigments. The bulk forms of these materials are synthesized by both melt flux and solid-state routes, which provide some control over the crystallite size of the product. The melt flux process is time intensive, but it produces relatively large crystals at lower reaction temperatures. In comparison, the solid-state method is quicker yet requires higher reaction temperatures and yields smaller crystallites. Upon stirring in hot water, CaCuSi4O10 spontaneously exfoliates into monolayer nanosheets, which are characterized by TEM and PXRD. BaCuSi4O10 on the other hand requires ultrasonication in organic solvents to achieve exfoliation. Near infrared imaging illustrates that both the bulk and nanosheet forms of CaCuSi4O10 and BaCuSi4O10 are strong near infrared emitters. Aqueous CaCuSi4O10 and BaCuSi4O10 nanosheet dispersions are useful because they provide a new way to handle, characterize, and process these materials in colloidal form.


Subject(s)
Barium Compounds/chemistry , Calcium Compounds/chemistry , Coloring Agents/chemistry , Copper/chemistry , Silicates/chemistry , Hydrogen-Ion Concentration
18.
J Am Chem Soc ; 135(5): 1677-9, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23215240

ABSTRACT

We describe monolayer nanosheets of calcium copper tetrasilicate, CaCuSi(4)O(10), which have strong near-IR luminescence and are amenable to solution processing methods. The facile exfoliation of bulk CaCuSi(4)O(10) into nanosheets is especially surprising in view of the long history of this material as the colored component of Egyptian blue, a well-known pigment from ancient times.


Subject(s)
Copper/chemistry , Nanoparticles/chemistry , Nanotechnology , Pigments, Biological/chemistry , Science , Silicates/chemistry , Calcium/chemistry , History, Ancient , Luminescence , Models, Molecular , Particle Size , Surface Properties
19.
J Phys Chem Lett ; 3(16): 2204-8, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-26295771

ABSTRACT

Layered heterostructures containing graphene oxide (GO) nanosheets and 20-35 nm bimetal coatings can detach easily from a Si substrate upon sonication-spontaneously forming freestanding, micrometer-sized scrolls with GO on the outside-due to a combination of material stresses and weak bonding between GO layers. Simple procedures can tune the scroll diameters by varying the thicknesses of the metal films, and these results are confirmed by both experiment and modeling. The selection of materials determines the stresses that control the rolling behavior, as well as the functionality of the structures. In the GO/Ti/Pt system, the Pt is located within the interior of the scrolls, which can become self-propelled microjet engines through O2 bubbling when suspended in aqueous H2O2.

20.
J Am Chem Soc ; 129(25): 7961-8, 2007 Jun 27.
Article in English | MEDLINE | ID: mdl-17547403

ABSTRACT

The decomposition of a series of ruthenium metathesis catalysts has been examined using methylidene species as model complexes. All of the phosphine-containing methylidene complexes decomposed to generate methylphosphonium salts, and their decomposition routes followed first-order kinetics. The formation of these salts in high conversion, coupled with the observed kinetic behavior for this reaction, suggests that the major decomposition pathway involves nucleophilic attack of a dissociated phosphine on the methylidene carbon. This mechanism also is consistent with decomposition observed in the presence of ethylene as a model olefin substrate. The decomposition of phosphine-free catalyst (H2IMes)(Cl)2Ru=CH(2-C6H4-O-i-Pr) (H2IMes = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) with ethylene was found to generate unidentified ruthenium hydride species. The novel ruthenium complex (H2IMes)(pyridine)3(Cl)2Ru, which was generated during the synthetic attempts to prepare the highly unstable pyridine-based methylidene complex (H2IMes)(pyridine)2(Cl)2Ru=CH2, is also reported.


Subject(s)
Alkenes/chemistry , Ruthenium/chemistry , Catalysis , Ethylenes/chemistry , Molecular Biology , Molecular Structure , Phosphines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...