Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920075

ABSTRACT

The world's oceans are one of the most valuable sources of biodiversity and resources on the planet, although there are areas where the marine ecosystem is threatened by human activities. Marine protected areas (MPAs) are distinctive spaces protected by law due to their unique characteristics, such as being the habitat of endangered marine species. Even with this protection, there are still illegal activities such as poaching or anchoring that threaten the survival of different marine species. In this context, we propose an autonomous surface vehicle (ASV) model system for the surveillance of marine areas by detecting and recognizing vessels through artificial intelligence (AI)-based image recognition services, in search of those carrying out illegal activities. Cloud and edge AI computing technologies were used for computer vision. These technologies have proven to be accurate and reliable in detecting shapes and objects for which they have been trained. Azure edge and cloud vision services offer the best option in terms of accuracy for this task. Due to the lack of 4G and 5G coverage in offshore marine environments, it is necessary to use radio links with a coastal base station to ensure communications, which may result in a high response time due to the high latency involved. The analysis of on-board images may not be sufficiently accurate; therefore, we proposed a smart algorithm for autonomy optimization by selecting the proper AI technology according to the current scenario (SAAO) capable of selecting the best AI source for the current scenario in real time, according to the required recognition accuracy or low latency. The SAAO optimizes the execution, efficiency, risk reduction, and results of each stage of the surveillance mission, taking appropriate decisions by selecting either cloud or edge vision models without human intervention.


Subject(s)
Ecosystem , Robotics , Artificial Intelligence , Biodiversity , Conservation of Natural Resources , Humans , Oceans and Seas
2.
Sensors (Basel) ; 19(15)2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31357720

ABSTRACT

Unmanned aerial vehicles (UAVs) are now considered one of the best remote sensing techniques for gathering data over large areas. They are now being used in the industry sector as sensing tools for proactively solving or preventing many issues, besides quantifying production and helping to make decisions. UAVs are a highly consistent technological platform for efficient and cost-effective data collection and event monitoring. The industrial Internet of things (IIoT) sends data from systems that monitor and control the physical world to data processing systems that cloud computing has shown to be important tools for meeting processing requirements. In fog computing, the IoT gateway links different objects to the internet. It can operate as a joint interface for different networks and support different communication protocols. A great deal of effort has been put into developing UAVs and multi-UAV systems. This paper introduces a smart IIoT monitoring and control system based on an unmanned aerial vehicle that uses cloud computing services and exploits fog computing as the bridge between IIoT layers. Its novelty lies in the fact that the UAV is automatically integrated into an industrial control system through an IoT gateway platform, while UAV photos are systematically and instantly computed and analyzed in the cloud. Visual supervision of the plant by drones and cloud services is integrated in real-time into the control loop of the industrial control system. As a proof of concept, the platform was used in a case study in an industrial concrete plant. The results obtained clearly illustrate the feasibility of the proposed platform in providing a reliable and efficient system for UAV remote control to improve product quality and reduce waste. For this, we studied the communication latency between the different IIoT layers in different IoT gateways.

SELECTION OF CITATIONS
SEARCH DETAIL
...