Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 117: 111284, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32919645

ABSTRACT

To reduce the risk of intra-stent restenosis and improve hemocompatibility of biomaterials, the therapeutic re-endothelialization is required. Indeed, the behavior of endothelial cells is affected by several factors such as wettability and surface energy of biomaterial in contact with cells and blood. The aim of this study was to evaluate the physicochemical and biological properties of new polymers derived from poly((R,S)-3,3-dimethylmalic acid) (PDMMLA) that will be used as cardiovascular stents coating. In fact, a comprehensive study of the roughness and topography and the thermal and rheological properties of these materials were investigated. Furthermore, this was correlated with the biological response of human vascular endothelial cells (HUVECs) and monocytes (MM6) to these biomaterials. Our results revealed very interesting surface properties of PDMMLAs, excellent thermal and thermo-mechanical properties and a suitable biological response. All these properties can be adjusted by simple chemical modification of the side chain of the studied polymers.


Subject(s)
Endothelial Cells , Stents , Biocompatible Materials/pharmacology , Humans , Polymers , Surface Properties
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 145: 145-154, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25770938

ABSTRACT

Nanocomposite TiO2-SiO2 thin films with different compositions (from 0 to 100 mol% TiO2) were deposited by sol-gel dip-coating method on silicon substrate. Crystal structure, chemical bonding configuration, composition and morphology evolutions with composition were followed by Raman scattering, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy respectively. The refractive index and the extinction coefficient were derived in a broad band wavelength (250-900 nm) from spectroscopic ellipsometry data with high accuracy and correlated with composition and microstructure. Results showed an anatase structure for 100% TiO2 with a grain size in 6-10nm range. Whereas, the inclusion of SiO2 enlarges the optical band gap and suppresses the grain growth up to 4 nm in size. High TiO2 dispersion in SiO2 matrix was observed for all mixed materials. The refractive index (at λ=600 nm) increases linearly with composition from 1.48 (in 100% SiO2) to 2.22 (in 100% TiO2) leading to lower dense material, its dispersion being discussed in terms of the Wemple-DiDomenico single oscillator model. Hence, the optical parameters, such optical dispersion energies E0 and Ed, the average oscillators, strength S0 and wavelength λ0 and the ratio of the carrier concentration to the effective mass N/m(∗) have been derived. The analysis revealed a strong dependence on composition and structure. The optical response was also investigated in term of complex optical conductivity (σ) and both volume and surface energy loss functions (VELF and SELF).


Subject(s)
Nanocomposites/chemistry , Optical Phenomena , Phase Transition , Silicon Dioxide/chemistry , Titanium/chemistry , Electricity , Models, Molecular , Nanocomposites/ultrastructure , Photons , Refractometry , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermodynamics
3.
Dalton Trans ; 43(8): 3306-12, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24363108

ABSTRACT

Double perovskite type compounds of the formula BaA'LaTeO6 (A' = Na, K, Rb) were synthesized by solid state route and their crystal structures were determined by Rietveld analysis using powder X-ray diffraction and neutron diffraction data. Na compound crystallizes in the monoclinic system with P21/n space group whereas, K and Rb compounds crystallize in Fm3m space group. All the three compounds show rock salt type ordering at B site. Crystal structure analysis shows that La ion occupies A site in Na compound whereas, it occupies B site in K and Rb compounds according to the general formula of AA'BB'O6 for a double perovskite type compound. Effect of this crystallographic site swapping of the La ion was also observed in the photoluminescence study by doping Eu(3+) in La(3+) site. The large decrease in the intensity of the electric dipole ((5)D0-(7)F2) transition in the Rb compound compared to the Na compound indicates that Eu(3+) ion resides in the centrosymmetric octahedral environment in the Rb compound.

SELECTION OF CITATIONS
SEARCH DETAIL
...