Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Psychol ; 10: 174, 2019.
Article in English | MEDLINE | ID: mdl-30787899

ABSTRACT

Exercise is assumed to have positive effects on children's cognitive performance. However, given the inconclusive evidence for the long-term effects of exercise, it is difficult to advice schools on what specific exercise programs can improve children's cognitive performance. In particular, little is known about the effects of small exercise programs that may be feasible in daily school practice. Therefore, we assessed the effects of a 9-weeks program consisting of daily exercise breaks on children's cognitive performance, aerobic fitness and physical activity levels. We conducted a cluster-randomized controlled trial in 21 classes of eight Dutch primary schools. A total of 512 children aged 9-12 years participated. The exercise intervention had a duration of 9 weeks and consisted of a daily 10-min classroom-based exercise break of moderate to vigorous intensity. Before and after the intervention, we used four cognitive tasks (i.e., the Attention Network Test, Stroop test, d2 test of attention and Fluency task) to measure children's cognitive performance in domains of selective attention, inhibition and memory retrieval. In addition, we measured aerobic fitness with a Shuttle Run test and physical activity during school hours by accelerometers. We analyzed data using mixed models, adjusting for baseline scores, class and school. After 9 weeks, there were no intervention effects on children's cognitive performance or aerobic fitness. Children in the intervention group spent 2.9 min more of their school hours in moderate to vigorous physical activity as compared to the children in the control group. In conclusion, daily 10-min exercise breaks in the classroom did not improve, nor deteriorate cognitive performance in children. The exercise breaks had no effect on children's fitness, and resulted in 2.9 min more time spent in moderate to vigorous physical activity during school hours. Daily exercise breaks can be implemented in the classroom to promote children's physical activity during school time, without adverse effect on their cognitive performance.

2.
Br J Sports Med ; 53(10): 640-647, 2019 May.
Article in English | MEDLINE | ID: mdl-30061304

ABSTRACT

OBJECTIVE: To summarise the current evidence on the effects of physical activity (PA) interventions on cognitive and academic performance in children, and formulate research priorities and recommendations. DESIGN: Systematic review (following PRISMA guidelines) with a methodological quality assessment and an international expert panel. We based the evaluation of the consistency of the scientific evidence on the findings reported in studies rated as of high methodological quality. DATA SOURCES: PubMed, PsycINFO, Cochrane Central, Web of Science, ERIC, and SPORTDiscus. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: PA-intervention studies in children with at least one cognitive or academic performance assessment. RESULTS: Eleven (19%) of 58 included intervention studies received a high-quality rating for methodological quality: four assessed effects of PA interventions on cognitive performance, six assessed effects on academic performance, and one on both. All high-quality studies contrasted the effects of additional/adapted PA activities with regular curriculum activities. For cognitive performance 10 of 21 (48%) constructs analysed showed statistically significant beneficial intervention effects of PA, while for academic performance, 15 of 25 (60%) analyses found a significant beneficial effect of PA. Across all five studies assessing PA effects on mathematics, beneficial effects were reported in six out of seven (86%) outcomes. Experts put forward 46 research questions. The most pressing research priority cluster concerned the causality of the relationship between PA and cognitive/academic performance. The remaining clusters pertained to PA characteristics, moderators and mechanisms governing the 'PA-performance' relationship and miscellaneous topics. CONCLUSION: There is currently inconclusive evidence for the beneficial effects of PA interventions on cognitive and overall academic performance in children. We conclude that there is strong evidence for beneficial effects of PA on maths performance.The expert panel confirmed that more 'high-quality' research is warranted. By prioritising the most important research questions and formulating recommendations we aim to guide researchers in generating high-quality evidence. Our recommendations focus on adequate control groups and sample size, the use of valid and reliable measurement instruments for physical activity and cognitive performance, measurement of compliance and data analysis. PROSPERO REGISTRATION NUMBER: CRD42017082505.


Subject(s)
Academic Performance , Cognition , Exercise , Adolescent , Child , Humans
3.
Front Neurosci ; 12: 672, 2018.
Article in English | MEDLINE | ID: mdl-30319345

ABSTRACT

Participation in structured physical activity is assumed to have a positive effect on cognitive and academic performance. A single bout of moderate to vigorous exercise has been found to have a small acute positive effect on the cognitive performance of children and adolescents. However, the dose-response effects of exercise duration are largely unknown. Therefore, the current study examined the acute effects of moderate-to-vigorous exercise with a duration of either 10, 20, or 30 min on selective attention and working memory performance of young adolescents. One hundred and nineteen adolescents (11-14 years old) participated in a randomized, controlled crossover study. Adolescents were assigned to one of the three exercise durations, each paired with a sedentary control session of the same duration. Cognitive performance was measured before and immediately after the exercise and control condition. The Attention Network Test and n-back task were used to measure selective attention and working memory, respectively. There were no significant exercise effects on selective attention (i.e., alerting, orienting, or executive control) or working memory performance measured immediately after the exercise bouts. Furthermore, there were no differential effects of exercise duration. In sum, acute exercise bouts with a duration of 10, 20, or 30 min did not improve, but neither deteriorate cognitive performance of young adolescents compared to a sedentary control condition.

4.
Front Psychol ; 7: 723, 2016.
Article in English | MEDLINE | ID: mdl-27242629

ABSTRACT

Recent studies indicate that a single bout of physical exercise can have immediate positive effects on cognitive performance of children and adolescents. However, the type of exercise that affects cognitive performance the most in young adolescents is not fully understood. Therefore, this controlled study examined the acute effects of three types of 12-min classroom-based exercise sessions on information processing speed and selective attention. The three conditions consisted of aerobic, coordination, and strength exercises, respectively. In particular, this study focused on the feasibility and efficiency of introducing short bouts of exercise in the classroom. One hundred and ninety five students (5th and 6th grade; 10-13 years old) participated in a double baseline within-subjects design, with students acting as their own control. Exercise type was randomly assigned to each class and acted as between-subject factor. Before and immediately after both the control and the exercise session, students performed two cognitive tests that measured information processing speed (Letter Digit Substitution Test) and selective attention (d2 Test of Attention). The results revealed that exercising at low to moderate intensity does not have an effect on the cognitive parameters tested in young adolescents. Furthermore, there were no differential effects of exercise type. The results of this study are discussed in terms of the caution which should be taken when conducting exercise sessions in a classroom setting aimed at improving cognitive performance.

6.
Front Aging Neurosci ; 7: 35, 2015.
Article in English | MEDLINE | ID: mdl-25852549

ABSTRACT

The current study investigated the extent and patterns of cognitive variability in younger and older adults. An important novelty of this study is the use of graph-based community structure detection analysis to map performance in a mixed population of 79 young and 76 older adults, without separating the age groups a-priori. We identified six subgroups, with distinct patterns of neuropsychological performance. The stability of the identified subgroups was confirmed by employing a cross-validation support vector machine based analysis. The majority of these subgroups comprised either young or older adults, confirming the expected role of aging in cognitive performance. In addition, we identified a subgroup of young and older adults who performed at a similar cognitive level of overall good cognitive performance with slightly decreased processing speed. This result showed that older age is not necessarily associated with general lower cognitive performance and that being young is not necessarily associated with superior cognitive performance. Moreover, cognitively better performing elderly had a significantly higher level of education attainment and higher crystallized intelligence than the other elderly, which suggests that older adults with higher cognitive reserve may be able to cope better with age-related neurobiological change.

7.
Cereb Cortex ; 25(7): 1987-99, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24532319

ABSTRACT

Aging affects functional connectivity between brain areas, however, a complete picture of how aging affects integration of information within and between functional networks is missing. We used complex network measures, derived from a brain-wide graph, to provide a comprehensive overview of age-related changes in functional connectivity. Functional connectivity in young and older participants was assessed during resting-state fMRI. The results show that aging has a large impact, not only on connectivity within functional networks but also on connectivity between the different functional networks in the brain. Brain networks in the elderly showed decreased modularity (less distinct functional networks) and decreased local efficiency. Connectivity decreased with age within networks supporting higher level cognitive functions, that is, within the default mode, cingulo-opercular and fronto-parietal control networks. Conversely, no changes in connectivity within the somatomotor and visual networks, networks implicated in primary information processing, were observed. Connectivity between these networks even increased with age. A brain-wide analysis approach of functional connectivity in the aging brain thus seems fundamental in understanding how age affects integration of information.


Subject(s)
Aging/physiology , Brain/physiology , Adolescent , Adult , Aged , Aging/pathology , Brain/pathology , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/pathology , Neural Pathways/physiology , Rest , Young Adult
8.
Brain Behav ; 4(5): 615-25, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25328839

ABSTRACT

BACKGROUND: Melodic Intonation Therapy (MIT) uses the melodic elements of speech to improve language production in severe nonfluent aphasia. A crucial element of MIT is the melodically intoned auditory input: the patient listens to the therapist singing a target utterance. Such input of melodically intoned language facilitates production, whereas auditory input of spoken language does not. METHODS: Using a sparse sampling fMRI sequence, we examined the differential auditory processing of spoken and melodically intoned language. Nineteen right-handed healthy volunteers performed an auditory lexical decision task in an event related design consisting of spoken and melodically intoned meaningful and meaningless items. The control conditions consisted of neutral utterances, either melodically intoned or spoken. RESULTS: Irrespective of whether the items were normally spoken or melodically intoned, meaningful items showed greater activation in the supramarginal gyrus and inferior parietal lobule, predominantly in the left hemisphere. Melodically intoned language activated both temporal lobes rather symmetrically, as well as the right frontal lobe cortices, indicating that these regions are engaged in the acoustic complexity of melodically intoned stimuli. Compared to spoken language, melodically intoned language activated sensory motor regions and articulatory language networks in the left hemisphere, but only when meaningful language was used. DISCUSSION: Our results suggest that the facilitatory effect of MIT may - in part - depend on an auditory input which combines melody and meaning. CONCLUSION: Combined melody and meaning provide a sound basis for the further investigation of melodic language processing in aphasic patients, and eventually the neurophysiological processes underlying MIT.


Subject(s)
Brain/physiology , Speech Perception/physiology , Speech/physiology , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
9.
PLoS One ; 9(6): e99250, 2014.
Article in English | MEDLINE | ID: mdl-24911016

ABSTRACT

To investigate which neural correlates are associated with successful working memory performance, fMRI was recorded in healthy younger and older adults during performance on an n-back task with varying task demands. To identify functional networks supporting working memory processes, we used independent component analysis (ICA) decomposition of the fMRI data. Compared to younger adults, older adults showed a larger neural (BOLD) response in the more complex (2-back) than in the baseline (0-back) task condition, in the ventral lateral prefrontal cortex (VLPFC) and in the right fronto-parietal network (FPN). Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in the more complex task condition. This 'BOLD-performance' relationship suggests that the neural correlates linked with successful performance in the older adults are related to specific working memory processes present in the complex but not in the baseline task condition [corrected].Furthermore, the selective presence of this relationship in older but not in younger adults suggests that increased neural activity in the VLPFC serves a compensatory role in the aging brain which benefits task performance in the elderly.


Subject(s)
Brain/physiology , Magnetic Resonance Imaging , Memory, Short-Term , Adolescent , Adult , Age Factors , Aged , Brain Mapping , Cognition , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Neuropsychological Tests , Young Adult
10.
Neuroimage ; 91: 52-62, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24473095

ABSTRACT

The ability to suppress irrelevant information declines with age, while the ability to enhance relevant information remains largely intact. We examined mechanisms behind this dissociation in an fMRI study, using a selective attention task in which relevant and irrelevant information appeared simultaneously. Slowing of response times due to distraction by irrelevant targets was larger in older than younger participants. Increased distraction was related to larger increases in activity and connectivity in areas of the dorsal attention network, indicating a more pronounced (re-)orientation of attention. The decreases in accuracy in target compared to nontarget trials were smaller in older compared to younger participants. In older adults we found increased recruitment of areas in the fronto-parietal control network (FPCN) during target detection. Moreover, older adults showed increased connectivity between the FPCN, supporting cognitive control, and somatomotor areas implicated in response selection and execution. This connectivity increase was related to improved target detection, suggesting that older adults engage additional cognitive control, which might enable the observed intact performance in detecting and responding to target stimuli.


Subject(s)
Aging/psychology , Attention/physiology , Brain/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Brain Mapping , Electroencephalography , Female , Humans , Image Processing, Computer-Assisted , Linear Models , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/physiology , Oxygen/blood , Photic Stimulation , Psychomotor Performance/physiology , Reaction Time/physiology , Young Adult
11.
Hum Brain Mapp ; 35(8): 3788-804, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24382835

ABSTRACT

Recent studies have shown that aging has a large impact on connectivity within and between functional networks. An open question is whether elderly still have the flexibility to adapt functional network connectivity (FNC) to the demands of the task at hand. To study this, we collected fMRI data in younger and older participants during resting state, a selective attention (SA) task and an n-back working memory task with varying levels of difficulty. Spatial independent component (IC) analysis was used to identify functional networks over all participants and all conditions. Dual regression was used to obtain participant and task specific time-courses per IC. Subsequently, functional connectivity was computed between all ICs in each of the tasks. Based on these functional connectivity matrices, a scaled version of the eigenvector centrality (SEC) was used to measure the total influence of each IC in the complete graph of ICs. The results demonstrated that elderly remain able to adapt FNC to task demands. However, there was an age-related shift in the impetus for FNC change. Older participants showed the maximal change in SEC patterns between resting state and the SA task. Young participants, showed the largest shift in SEC patterns between the less demanding SA task and the more demanding 2-back task. Our results suggest that increased FNC changes from resting state to low demanding tasks in elderly reflect recruitment of additional resources, compared with young adults. The lack of change between the low and high demanding tasks suggests that elderly reach a resource ceiling.


Subject(s)
Aging/physiology , Attention/physiology , Brain/physiology , Memory, Short-Term/physiology , Neuronal Plasticity/physiology , Adaptation, Psychological/physiology , Adolescent , Adult , Aged , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/physiology , Neuropsychological Tests , Rest , Signal Processing, Computer-Assisted , Young Adult
12.
PLoS One ; 8(5): e63701, 2013.
Article in English | MEDLINE | ID: mdl-23667658

ABSTRACT

While some elderly show deteriorations in cognitive performance, others achieve performance levels comparable to young adults. To examine whether age-related changes in brain activity varied with working memory performance efficiency, we recorded electroencephalography (EEG) from young and older healthy adults during performance on an n-back task with two loads (0- and 1-back) and two versions (identity and integrated). Young adults showed a typical P3 amplitude pattern with a parietal-maximum. Compared to young adults, the P3 amplitude of older adults was characterized by frontal hyperactivity coupled with posterior hypoactivity. Moreover, P3 amplitude in young and older adults varied with working memory performance efficiency. Among young adults, more efficient performance correlated with a larger P3 amplitude at parietal sites. In contrast, a higher P3 amplitude at midline electrode sites in older adults correlated with less efficient performance. Particularly, the enhanced frontal midline EEG activity in older adults during working memory performance seems to reflect inefficient use of neural resources due to frontal lobe dysfunction.


Subject(s)
Evoked Potentials/physiology , Memory, Short-Term/physiology , Adult , Age Factors , Aged , Behavior , Demography , Electrodes , Electroencephalography , Female , Humans , Male , Middle Aged , Models, Neurological , Neuropsychological Tests , Reaction Time/physiology , Task Performance and Analysis , Young Adult
13.
J Cogn Neurosci ; 24(10): 2057-69, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22816367

ABSTRACT

With increasing age, people experience more difficulties with suppressing irrelevant information, which may have a major impact on cognitive functioning. The extent of decline of inhibitory functions with age is highly variable between individuals. In this study, we used ERPs and phase locking analyses to investigate neural correlates of this variability in inhibition between individuals. Older and younger participants performed a selective attention task in which relevant and irrelevant information was presented simultaneously. The participants were split into high and low performers based on their level of inhibition inefficiency, that is, the slowing of RTs induced by information that participants were instructed to ignore. P1 peak amplitudes were larger in low performers than in high performers, indicating that low performers were less able to suppress the processing of irrelevant stimuli. Phase locking analyses were used as a measure of functional connectivity. Efficient inhibition in both age groups was related to the increased functional connectivity in the alpha band between frontal and occipito-parietal ROIs in the prestimulus interval. In addition, increased power in the alpha band in occipito-parietal ROIs was related to better inhibition both before and after stimulus onset. Phase locking in the upper beta band before and during stimulus presentation between frontal and occipito-parietal ROIs was related to a better performance in older participants only, suggesting that this is an active compensation mechanism employed to maintain adequate performance. In addition, increased top-down modulation and increased power in the alpha band appears to be a general mechanism facilitating inhibition in both age groups.


Subject(s)
Aging/physiology , Nerve Net/physiology , Neural Inhibition/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Reaction Time/physiology , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Neural Pathways/physiology , Young Adult
14.
Biol Psychiatry ; 71(8): 693-9, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22341370

ABSTRACT

BACKGROUND: Evidence indicates involvement of the endocannabinoid (eCB) system in both the pathophysiology of schizophrenia and working memory (WM) function. Additionally, schizophrenia patients exhibit relatively strong WM deficits. These findings suggest the possibility that the eCB system is also involved in WM deficits in schizophrenia. In the present study, we examined if perturbation of the eCB system can induce abnormal WM activity in healthy subjects. METHODS: A pharmacological functional magnetic resonance imaging study was conducted with a placebo-controlled, cross-over design, investigating effects of the eCB agonist Δ9-tetrahydrocannabinol on WM function in 17 healthy volunteers, by means of a parametric Sternberg item-recognition paradigm with five difficulty levels. RESULTS: Performance accuracy was significantly reduced after Δ9-tetrahydrocannabinol. In the placebo condition, brain activity increased linearly with rising WM load. Δ9-Tetrahydrocannabinol administration enhanced activity for low WM loads and reduced the linear relationship between WM load and activity in the WM system as a whole and in left dorsolateral prefrontal cortex, inferior temporal gyrus, inferior parietal gyrus, and cerebellum in particular. CONCLUSIONS: Δ9-Tetrahydrocannabinol enhanced WM activity network-wide for low loads, while reducing the load-dependent response for increasing WM loads. These results indicate that a challenged eCB system can induce both abnormal WM activity and WM performance deficits and provide an argument for the possibility of eCB involvement in WM deficits in schizophrenia.


Subject(s)
Cerebellum/drug effects , Cerebral Cortex/drug effects , Dronabinol/pharmacology , Hallucinogens/pharmacology , Memory, Short-Term/drug effects , Recognition, Psychology/drug effects , Adolescent , Adult , Cross-Over Studies , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Schizophrenia/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...