Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(6): e2211368120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36730202

ABSTRACT

Ligation of T cell receptor (TCR) to peptide-MHC (pMHC) complexes initiates signaling leading to T cell activation and TCR ubiquitination. Ubiquitinated TCR is then either internalized by the T cell or released toward the antigen-presenting cell (APC) in extracellular vesicles. How these distinct fates are orchestrated is unknown. Here, we show that clathrin is first recruited to TCR microclusters by HRS and STAM2 to initiate release of TCR in extracellular vesicles through clathrin- and ESCRT-mediated ectocytosis directly from the plasma membrane. Subsequently, EPN1 recruits clathrin to remaining TCR microclusters to enable trans-endocytosis of pMHC-TCR conjugates from the APC. With these results, we demonstrate how clathrin governs bidirectional membrane exchange at the immunological synapse through two topologically opposite processes coordinated by the sequential recruitment of ecto- and endocytic adaptors. This provides a scaffold for direct two-way communication between T cells and APCs.


Subject(s)
Clathrin , Immunological Synapses , Clathrin/metabolism , Receptors, Antigen, T-Cell , T-Lymphocytes , Lymphocyte Activation
2.
Nat Commun ; 13(1): 3460, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710644

ABSTRACT

The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers.


Subject(s)
CD40 Ligand , Extracellular Vesicles , CD40 Ligand/metabolism , Extracellular Vesicles/metabolism , Immunological Synapses , Synaptic Vesicles , T-Lymphocytes
3.
Elife ; 82019 08 30.
Article in English | MEDLINE | ID: mdl-31469364

ABSTRACT

Planar supported lipid bilayers (PSLB) presenting T cell receptor (TCR) ligands and ICAM-1 induce budding of extracellular microvesicles enriched in functional TCR, defined here as synaptic ectosomes (SE), from helper T cells. SE bind peptide-MHC directly exporting TCR into the synaptic cleft, but incorporation of other effectors is unknown. Here, we utilized bead supported lipid bilayers (BSLB) to capture SE from single immunological synapses (IS), determined SE composition by immunofluorescence flow cytometry and enriched SE for proteomic analysis by particle sorting. We demonstrate selective enrichment of CD40L and ICOS in SE in response to addition of CD40 and ICOSL, respectively, to SLB presenting TCR ligands and ICAM-1. SE are enriched in tetraspanins, BST-2, TCR signaling and ESCRT proteins. Super-resolution microscopy demonstrated that CD40L is present in microclusters within CD81 defined SE that are spatially segregated from TCR/ICOS/BST-2. CD40L+ SE retain the capacity to induce dendritic cell maturation and cytokine production.


Subject(s)
CD40 Ligand/analysis , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/metabolism , Receptors, Antigen/analysis , T-Lymphocytes, Helper-Inducer/metabolism , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Proteome/analysis
4.
JCI Insight ; 1(20): e88689, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27942586

ABSTRACT

Hepatic fibrosis arises from inflammation in the liver initiated by resident macrophage activation and massive leukocyte accumulation. Hepatic macrophages hold a central position in maintaining homeostasis in the liver and in the pathogenesis of acute and chronic liver injury linked to fibrogenesis. Interferon regulatory factor 5 (IRF5) has recently emerged as an important proinflammatory transcription factor involved in macrophage activation under acute and chronic inflammation. Here, we revealed that IRF5 is significantly induced in liver macrophages from human subjects developing liver fibrosis from nonalcoholic fatty liver disease or hepatitis C virus infection. Furthermore, IRF5 expression positively correlated with clinical markers of liver damage, such as plasma transaminase and bilirubin levels. Interestingly, mice lacking IRF5 in myeloid cells (MKO) were protected from hepatic fibrosis induced by metabolic or toxic stresses. Transcriptional reprogramming of macrophages lacking IRF5 was characterized by immunosuppressive and antiapoptotic properties. Consequently, IRF5 MKO mice respond to hepatocellular stress by promoting hepatocyte survival, leading to complete protection from hepatic fibrogenesis. Our findings reveal a regulatory network, governed by IRF5, that mediates hepatocyte death and liver fibrosis in mice and humans. Therefore, modulating IRF5 function may be an attractive approach to experimental therapeutics in fibroinflammatory liver disease.


Subject(s)
Inflammation/pathology , Interferon Regulatory Factors/metabolism , Liver Cirrhosis/pathology , Macrophage Activation , Macrophages/metabolism , Animals , Apoptosis , Bilirubin/blood , Female , Hepatocytes/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Transaminases/blood
5.
Proc Natl Acad Sci U S A ; 112(35): 11001-6, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26283380

ABSTRACT

Whereas the importance of macrophages in chronic inflammatory diseases is well recognized, there is an increasing awareness that neutrophils may also play an important role. In addition to the well-documented heterogeneity of macrophage phenotypes and functions, neutrophils also show remarkable phenotypic diversity among tissues. Understanding the molecular pathways that control this heterogeneity should provide abundant scope for the generation of more specific and effective therapeutics. We have shown that the transcription factor IFN regulatory factor 5 (IRF5) polarizes macrophages toward an inflammatory phenotype. IRF5 is also expressed in other myeloid cells, including neutrophils, where it was linked to neutrophil function. In this study we explored the role of IRF5 in models of acute inflammation, including antigen-induced inflammatory arthritis and lung injury, both involving an extensive influx of neutrophils. Mice lacking IRF5 accumulate far fewer neutrophils at the site of inflammation due to the reduced levels of chemokines important for neutrophil recruitment, such as the chemokine (C-X-C motif) ligand 1. Furthermore we found that neutrophils express little IRF5 in the joints and that their migratory properties are not affected by the IRF5 deficiency. These studies extend prior ones suggesting that inhibiting IRF5 might be useful for chronic macrophage-induced inflammation and suggest that IRF5 blockade would ameliorate more acute forms of inflammation, including lung injury.


Subject(s)
Inflammation/physiopathology , Interferon Regulatory Factors/physiology , Acute Disease , Animals , Chemokines/physiology , Chronic Disease , Inflammation/pathology , Macrophages/pathology , Mice , Synovial Membrane/pathology
6.
Cell Rep ; 8(5): 1308-17, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25159141

ABSTRACT

Interferon Regulatory Factor 5 (IRF5) plays a major role in setting up an inflammatory macrophage phenotype, but the molecular basis of its transcriptional activity is not fully understood. In this study, we conduct a comprehensive genome-wide analysis of IRF5 recruitment in macrophages stimulated with bacterial lipopolysaccharide and discover that IRF5 binds to regulatory elements of highly transcribed genes. Analysis of protein:DNA microarrays demonstrates that IRF5 recognizes the canonical IRF-binding (interferon-stimulated response element [ISRE]) motif in vitro. However, IRF5 binding in vivo appears to rely on its interactions with other proteins. IRF5 binds to a noncanonical composite PU.1:ISRE motif, and its recruitment is aided by RelA. Global gene expression analysis in macrophages deficient in IRF5 and RelA highlights the direct role of the RelA:IRF5 cistrome in regulation of a subset of key inflammatory genes. We map the RelA:IRF5 interaction domain and suggest that interfering with it would offer selective targeting of macrophage inflammatory activities.


Subject(s)
Interferon Regulatory Factors/metabolism , Macrophages/metabolism , Transcription Factor RelA/metabolism , Animals , Cells, Cultured , Genome , Interferon Regulatory Factors/genetics , Macrophage Activation/genetics , Macrophages/immunology , Mice , Mice, Inbred C57BL , Protein Binding , Response Elements , Transcription Factor RelA/genetics , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...