Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Rev. esp. cardiol. (Ed. impr.) ; 75(6): 479-487, Jun. 2022. tab, graf
Article in Spanish | IBECS | ID: ibc-205105

ABSTRACT

Introducción y objetivos: El acceso transaxilar (ATx) se ha convertido en el acceso alternativo al transfemoral (ATF), más utilizado en pacientes sometidos a implante percutáneo de válvula aórtica (TAVI). El objetivo principal de este estudio es comparar la mortalidad total hospitalaria y a los 30 días de los pacientes incluidos en el registro español de TAVI a los que se trató por acceso ATx frente a ATF. Métodos: Se analizó a todos los pacientes incluidos en el registro español de TAVI tratados por ATx o ATF. Los eventos hospitalarios y a los 30 días de seguimiento se definieron según las recomendaciones de la Valve Academic Research Consortium. Se evaluó el impacto de la vía de acceso mediante emparejamiento por puntuación de propensión según las características clínicas y ecográficas. Resultados: Se incluyó a 6.603 pacientes, 191 (2,9%) tratados por ATx y 6.412 con ATF. Después del ajuste (grupo de ATx, n=113; grupo de ATF, n=3.035), el éxito del dispositivo fue similar entre ambos grupos (el 94% en el grupo de ATx frente al 95% en el de ATF; p=0,95); sin embargo, se observó un incremento en la tasa de infarto agudo de miocardio (OR=5,3; IC95%, 2,0-13,8; p=0,001), complicaciones renales (OR=2,3; IC95%, 1,3-4,1; p=0,003) e implante de marcapasos (OR=1,6; IC95%, 1,01-2,6; p=0,03) en el grupo de ATx comparado con el de ATF. De mismo modo, la mortalidad hospitalaria y a los 30 días fueron superiores en el grupo de ATx (respectivamente, OR=2,2; IC95%, 1,04-4,6; p=0,039; y OR=2,3; IC95%, 1,2-4,5; p=0,01). Conclusiones: El ATx se asocia con un aumento en la mortalidad total tanto hospitalaria como a los 30 días frente al ATF. Ante estos resultados, el ATx debe considerarse solo en caso de que el ATF no sea posible (AU)


Introduction and objectives: Transaxillary access (TXA) has become the most widely used alternative to transfemoral access (TFA) in patients undergoing transcatheter aortic valve implantation (TAVI). The aim of this study was to compare total in-hospital and 30-day mortality in patients included in the Spanish TAVI registry who were treated by TXA or TFA access. Methods: We analyzed data from patients treated with TXA or TFA and who were included in the TAVI Spanish registry. In-hospital and 30-day events were defined according to the recommendations of the Valve Academic Research Consortium. The impact of the access route was evaluated by propensity score matching according to clinical and echocardiogram characteristics. Results: A total of 6603 patients were included; 191 (2.9%) were treated via TXA and 6412 via TFA access. After adjustment (n=113 TXA group and n=3035 TFA group) device success was similar between the 2 groups (94%, TXA vs 95%, TFA; P=.95). However, compared with the TFA group, the TXA group showed a higher rate of acute myocardial infarction (OR, 5.3; 95%CI, 2.0-13.8); P=.001), renal complications (OR, 2.3; 95%CI, 1.3-4.1; P=.003), and pacemaker implantation (OR, 1.6; 95%CI, 1.01-2.6; P=.03). The TXA group also had higher in-hospital and 30-day mortality rates (OR, 2.2; 95%CI, 1.04-4.6; P=.039 and OR, 2.3; 95%CI, 1.2-4.5; P=.01, respectively). Conclusions: Compared with ATF, TXA is associated with higher total mortality, both in-hospital and at 30 days. Given these results, we believe that TXA should be considered only in those patients who are not suitable candidates for TFA (AU)


Subject(s)
Humans , Male , Female , Aged , Aged, 80 and over , Heart Valve Prosthesis Implantation/methods , Heart Valve Diseases/surgery , Treatment Outcome , Follow-Up Studies , Prospective Studies
2.
Eur J Neurol ; 26(5): 816-820, 2019 05.
Article in English | MEDLINE | ID: mdl-30586229

ABSTRACT

BACKGROUND AND PURPOSE: There are no recommendations regarding how to treat cardioembolic recurrent strokes when patients are well anticoagulated. We evaluated the safety and efficacy of combining oral anticoagulation (OAC) with percutaneous left atrial appendage closure (LAAC) in patients with well-anticoagulated atrial fibrillation (AF) with recurrent strokes. METHODS: In an explorative, prospective, observational study, LAAC was performed in patients with AF with at least two ischaemic strokes in the previous year, despite good anticoagulation using the Amplatzer Cardiac Plug (St Jude Medical, St Paul, MN, USA) or Amulet Abbot device (Abbot Vascular, Santa Clara, CA, USA). We recorded age, type of AF, CHA2 DS2 -VASC and HAS-BLED scores, types of OAC and risk factors. After closure, treatment with aspirin (100 mg/day) was continued for 3 months in combination with indefinite OAC. Clinical status, recurrent embolisms and bleeding complications were recorded during follow-up. RESULTS: A total of 19 patients were included (mean age, 72.1 ± 9.6 years; mean CHA2 DS2 -VASC score, 5.3 ± 1.48; mean number of previous strokes, 2.78 ± 1.15). Thirteen had spontaneous echocardiographic contrast and all had dilatation of the left atrium. Eighteen patients had a multilobulated left atrial appendage, 17 with 'chicken-wing' morphology and one patient had a left atrial appendage thrombus. There were no complications during the procedure. Only one patient had a transient ischaemic attack and no major bleeding occurred during a mean follow-up of 17.4 ± 11.5 months. CONCLUSION: Combination therapy with indefinite OAC plus LAAC in patients with AF with recurrent strokes despite good anticoagulation should be considered in order to prevent a new stroke.


Subject(s)
Anticoagulants/therapeutic use , Atrial Appendage/surgery , Cardiac Surgical Procedures/methods , Embolism/complications , Heart Diseases/complications , Stroke/etiology , Stroke/surgery , Aged , Aged, 80 and over , Anticoagulants/adverse effects , Aspirin/therapeutic use , Echocardiography , Embolism/diagnostic imaging , Female , Fibrinolytic Agents/therapeutic use , Heart Diseases/diagnostic imaging , Hemorrhage/chemically induced , Hemorrhage/epidemiology , Humans , Ischemic Attack, Transient/surgery , Male , Middle Aged , Prospective Studies , Recurrence , Stroke/diagnostic imaging
3.
Rev Neurol ; 42 Suppl 1: S85-92, 2006 Jan 07.
Article in Spanish | MEDLINE | ID: mdl-16506139

ABSTRACT

INTRODUCTION: A basic principle of molecular and clinical medicine states that the function of the organs and the cells they are made up of is determined by the overall set of specific proteins. Therefore, the function of each organ depends on the molecules present in each cell, and hence it comes as no surprise to find that when tissue function is altered, different changes have taken place in the proteins. In the nervous system there are numerous examples of changes in proteins that correlate with functional alterations, either during normal or pathological development. DEVELOPMENT: In order to understand these relations, and to establish models in which to study the aetiopathogenesis of the disease, it is necessary to direct steady synthesis or to suppress synthesis in the brain of the protein that is potentially involved in the development of the disease. In consequence, it is possible to determine whether the presence or the absence of the protein is the direct or indirect cause of the effects; this is one of the main goals that must be achieved in order to enable researchers to define potential therapeutic targets in hereditary diseases. In order to manipulate the specific protein causing a pathology, we use experimental animal models as essential research tools, since they enable us to determine which mechanisms are altered and how the function of a particular protein affects the mechanisms being studied. CONCLUSIONS: Suppressing a gene or its over-expression in models using genetically modified mice will provide us with a means of modifying the genome and, eventually, the protein in the different tissues as well as in the nervous system in an attempt to imitate the genetic pathology that involves mental retardation. By controlling or suppressing the expression of a protein in the brain it becomes possible to remodel the functional profile of the tissue and study the consequences of molecular genetic manipulation, together with the biochemical, cytological and physiological processes, under normal basal conditions and under specific stimuli or conditions such as stress.


Subject(s)
Cognition Disorders/genetics , Intellectual Disability/genetics , Animals , Disease Models, Animal , Humans , Mice
4.
Rev. neurol. (Ed. impr.) ; 42(supl.1): s85-s92, ene. 2006. tab
Article in Es | IBECS | ID: ibc-046414

ABSTRACT

Introducción. Es un principio básico en medicina moleculary clínica que el conjunto de proteínas específicas determinan lafunción de la célula y los órganos que componen. Por tanto, la funciónde cada órgano depende de las moléculas presentes en cada célula;no es sorprendente que cuando se altera la función tisular hanocurrido distintos cambios en las proteínas. En el sistema nerviosohay numerosos ejemplos de cambios en proteínas que se correlacionancon alteraciones funcionales, ya sea durante el desarrollo normalo patológico. Desarrollo. Para entender estas relaciones, y paraestablecer modelos en los que estudiar la etiopatogenia de la enfermedad,es necesario dirigir la síntesis estable o anular la síntesis enel cerebro de la proteína candidata involucrada en el desarrollo dela enfermedad. Como resultado, se puede determinar si la presenciade la proteína o su ausencia causa los efectos directamente o indirectamente;es una de las metas principales para poder definir potencialesdianas terapéuticas de las enfermedades hereditarias. Paraafectar la proteína específica causante de una patología, usamosmodelos animales de experimentación como herramientas esencialesen la investigación; con ellos se pueden establecer qué mecanismosse alteran y cómo afecta la función de la proteína concreta a losmecanismos estudiados. Conclusiones. La anulación de un gen o susobreexpresión, a través de modelos de ratón modificados genéticamente,proporcionarán un medio para modificar el genoma y, alfinal, la proteína de los distintos tejidos y también del sistema nervioso,en un intento de imitar la patología genética que cursa conretraso mental. Controlando o anulando la expresión de una proteínaen el cerebro es posible remodelar el perfil funcional del tejido yestudiar las consecuencias de la manipulación genética molecular,y los procesos bioquímicos, citológicos y fisiológicos, bajo condicionesbasales y bajo estímulos o condiciones específicas como elestrés


Introduction. A basic principle of molecular and clinical medicine states that the function of the organs and the cellsthey are made up of is determined by the overall set of specific proteins. Therefore, the function of each organ depends on themolecules present in each cell, and hence it comes as no surprise to find that when tissue function is altered, different changeshave taken place in the proteins. In the nervous system there are numerous examples of changes in proteins that correlate withfunctional alterations, either during normal or pathological development. Development. In order to understand these relations,and to establish models in which to study the aetiopathogenesis of the disease, it is necessary to direct steady synthesis or tosuppress synthesis in the brain of the protein that is potentially involved in the development of the disease. In consequence, it ispossible to determine whether the presence or the absence of the protein is the direct or indirect cause of the effects; this is oneof the main goals that must be achieved in order to enable researchers to define potential therapeutic targets in hereditarydiseases. In order to manipulate the specific protein causing a pathology, we use experimental animal models as essentialresearch tools, since they enable us to determine which mechanisms are altered and how the function of a particular proteinaffects the mechanisms being studied. Conclusions. Suppressing a gene or its over-expression in models using geneticallymodified mice will provide us with a means of modifying the genome and, eventually, the protein in the different tissues as well asin the nervous system in an attempt to imitate the genetic pathology that involves mental retardation. By controlling or suppressingthe expression of a protein in the brain it becomes possible to remodel the functional profile of the tissue and study theconsequences of molecular genetic manipulation, together with the biochemical, cytological and physiological processes, undernormal basal conditions and under specific stimuli or conditions such as stress


Subject(s)
Animals , Biomedical Research/trends , Disease Models, Animal , Intellectual Disability , Mice, Transgenic , Prader-Willi Syndrome , Rett Syndrome , Fragile X Syndrome , Spasms, Infantile , Tuberous Sclerosis
SELECTION OF CITATIONS
SEARCH DETAIL
...