Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Couns ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537905

ABSTRACT

Diabetes mellitus is a group of diseases characterized by hyperglycemia and its consequences, affecting over 34 million individuals in the United States and 422 million worldwide. While most diabetes is polygenic and is classified as type 1 (T1D), type 2 (T2D), or gestational diabetes (GDM), at least 0.4% of all diabetes is monogenic in nature. Correct diagnosis of monogenic diabetes has important implications for glycemic management and genetic counseling. We provide this Practice Resource to familiarize the genetic counseling community with (1) the existence of monogenic diabetes, (2) how it differs from more common polygenic/complex diabetes types, (3) the advantage of a correct diagnosis, and (4) guidance for identifying, counseling, and testing patients and families with suspected monogenic diabetes. This document is intended for genetic counselors and other healthcare professionals providing clinical services in any setting, with the goal of maximizing the likelihood of a correct diagnosis of monogenic diabetes and access to related care.

2.
Sci Adv ; 9(17): eade0631, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37126546

ABSTRACT

We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences.


Subject(s)
Signal Transduction , Zebrafish , Animals , Humans , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins
4.
HGG Adv ; 2(2): 100024, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-35047834

ABSTRACT

Activating Signal Cointegrator 1 Complex, Subunit 3 (ASCC3) is part of the four-part ASC-1 transcriptional cointegrator complex. This complex includes ASCC1 (associated with spinal muscular atrophy with congenital bone fractures 2), TRIP4 (associated with spinal muscular atrophy with congenital bone fractures 1), and ASCC2 (not yet associated with human disease.) ASCC3 encodes a DNA helicase responsible for generating single-stranded DNA as part of the DNA damage response. Interestingly, ASCC3 expresses coding and non-coding isoforms, which act in opposition to balance the recovery of gene transcription after UV-induced DNA damage. Here we report the discovery of ASCC3 as the cause of a neuromuscular syndrome in seven unreported individuals from six unrelated families and updates on the one previously reported family. All the individuals share a neurologic phenotype that ranges from severe developmental delay to muscle fatigue. There appears to be genotype-phenotype correlation, as the most mildly affected individual is homozygous for a rare missense variant, while the more severely affected individuals are compound heterozygotes for a missense and a presumed loss-of-function (LOF) variant. There are no individuals with biallelic presumed LOF variants in our cohort or in gnomAD, as this genotype may not be compatible with life. In summary we report a syndrome in these eleven individuals from seven families with biallelic variants in ASCC3.

5.
Clin Case Rep ; 4(4): 442-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27099748

ABSTRACT

We present a male patient with constitutional ring 1 chromosome and subsequent 6 Mb deletion at 1q43q44. The patient displays overlapping clinical features with reported patients with ring 1 chromosome and 1q43q44 microdeletion syndrome. To our knowledge, this is the first patient with ring 1 chromosome characterized by comparative genomic hybridization.

6.
Neurogenetics ; 16(4): 307-14, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26238514

ABSTRACT

The etiology of intellectual disabilities (ID) remains unknown for the majority of patients. Due to reduced reproductive fitness in many individuals with ID, de novo mutations account for a significant portion of severe ID. The ATP-dependent SWI/SNF chromatin modifier has been linked with neurodevelopmental disorders including ID and autism. ARID2 is an intrinsic component of polybromo-associated BAF (PBAF), the SWI/SNF subcomplex. In this study, we used clinical whole exome sequencing (WES) in proband-parent-trios to identify the etiology of ID. We identified four independent, novel, loss of function variants in ARID2 gene in four patients, three of which were confirmed to be de novo. The patients all have ID and share other clinical characteristics including attention deficit hyperactivity disorder, short stature, dysmorphic facial features, and Wormian bones. All four novel variants are predicted to lead to a premature termination with the loss of the two conservative zinc finger motifs. This is the first report of mutations in ARID2 associated with developmental delay and ID.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Mutation , Transcription Factors/genetics , Adolescent , Child , Exome , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...