Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38861030

ABSTRACT

Germline gain-of-function (GOF) variants in STAT3 cause an inborn error of immunity associated with early-onset poly-autoimmunity and immune dysregulation. To study tissue-specific immune dysregulation, we used a mouse model carrying a missense variant (p.G421R) that causes human disease. We observed spontaneous and imiquimod (IMQ)-induced skin inflammation associated with cell-intrinsic local Th17 responses in STAT3 GOF mice. CD4+ T cells were sufficient to drive skin inflammation and showed increased Il22 expression in expanded clones. Certain aspects of disease, including increased epidermal thickness, also required the presence of STAT3 GOF in epithelial cells. Treatment with a JAK inhibitor improved skin disease without affecting local Th17 recruitment and cytokine production. These findings collectively support the involvement of Th17 responses in the development of organ-specific immune dysregulation in STAT3 GOF and suggest that the presence of STAT3 GOF in tissues is important for disease and can be targeted with JAK inhibition.


Subject(s)
Gain of Function Mutation , Imiquimod , STAT3 Transcription Factor , Th17 Cells , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Th17 Cells/immunology , Mice , Humans , Imiquimod/pharmacology , Skin/pathology , Skin/metabolism , Skin/immunology , Interleukin-22 , Dermatitis/immunology , Dermatitis/genetics , Dermatitis/pathology , Dermatitis/metabolism , Mice, Inbred C57BL , Interleukins/genetics , Interleukins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/immunology , Inflammation/pathology
2.
Nat Commun ; 15(1): 4839, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844462

ABSTRACT

Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation. Here we systematically profile the epigenome of the recently expanded murine Ly49 gene family that mainly encode either inhibitory or activating surface receptors on natural killer cells. We identify a set of cis-regulatory elements (CREs) for activating Ly49 genes. In addition, we show that in mice, inhibitory and activating Ly49 genes are regulated by two separate sets of proximal CREs, likely resulting from lineage-specific losses of CRE activity. Furthermore, we find that some Ly49 genes are cross-regulated by the CREs of other Ly49 genes, suggesting that the Ly49 family has begun to evolve a concerted cis-regulatory mechanism. Collectively, we demonstrate the different modes of cis-regulatory evolution for a rapidly expanding gene family.


Subject(s)
Evolution, Molecular , Multigene Family , NK Cell Lectin-Like Receptor Subfamily A , Animals , Mice , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Gene Expression Regulation , Killer Cells, Natural/immunology , Mice, Inbred C57BL
3.
Immunity ; 57(6): 1394-1412.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38821054

ABSTRACT

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative-region-associated microglia (PAMs) in developing white matter and disease-associated microglia (DAMs) prevalent in various neurodegenerative conditions. PAMs and DAMs share a similar core gene signature. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we generated an inducible Cre driver line, Clec7a-CreERT2, that targets PAMs and DAMs in the brain parenchyma. Utilizing this tool, we profiled labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM and DAM gene expression. Through long-term tracking, we demonstrated microglial state plasticity. Lastly, we specifically depleted DAMs in demyelination, revealing their roles in disease recovery. Together, we provide a versatile genetic tool to characterize microglial states in CNS development and disease.


Subject(s)
Cell Plasticity , Microglia , Remyelination , Microglia/physiology , Animals , Mice , Cell Plasticity/genetics , Demyelinating Diseases/genetics , Mice, Inbred C57BL , Mice, Transgenic , Disease Models, Animal , Brain , Myelin Sheath/metabolism , White Matter/pathology
4.
bioRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38106187

ABSTRACT

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative region-associated microglia (PAM) in developing white matter and disease-associated microglia (DAM) prevalent in various neurodegenerative conditions. PAM and DAM share a similar core gene signature and other functional properties. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we report the generation of an inducible Cre driver line, Clec7a-CreERT2, designed to target PAM and DAM in the brain parenchyma. Utilizing this tool, we profile labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM/DAM gene expression. Through long-term tracking, we demonstrate surprising levels of plasticity in these microglial states. Lastly, we specifically depleted DAM in cuprizone-induced demyelination, revealing their roles in disease progression and recovery.

5.
Immunity ; 56(8): 1910-1926.e7, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37478854

ABSTRACT

Highly effective vaccines elicit specific, robust, and durable adaptive immune responses. To advance informed vaccine design, it is critical that we understand the cellular dynamics underlying responses to different antigen formats. Here, we sought to understand how antigen-specific B and T cells were activated and participated in adaptive immune responses within the mucosal site. Using a human tonsil organoid model, we tracked the differentiation and kinetics of the adaptive immune response to influenza vaccine and virus modalities. Each antigen format elicited distinct B and T cell responses, including differences in their magnitude, diversity, phenotype, function, and breadth. These differences culminated in substantial changes in the corresponding antibody response. A major source of antigen format-related variability was the ability to recruit naive vs. memory B and T cells to the response. These findings have important implications for vaccine design and the generation of protective immune responses in the upper respiratory tract.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Antibody Formation , Antibodies, Viral , T-Lymphocytes , Antigens , Organoids
6.
Science ; 376(6590): eabi9591, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35258337

ABSTRACT

In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.


Subject(s)
Autoimmune Diseases , COVID-19 , Animals , CD8-Positive T-Lymphocytes , Humans , Mice , Receptors, KIR , T-Lymphocytes, Regulatory
7.
J Immunol ; 207(8): 2086-2095, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34551963

ABSTRACT

CMV is a major infectious complication following solid organ transplantation. Reactivation of CMV leads to memory inflation, a process in which CD8 T cells expand over time. Memory inflation is associated with specific changes in T cell function, including increased oligoclonality, decreased cytokine production, and terminal differentiation. To address whether memory inflation during the first year after transplantation in human subjects alters T cell differentiation and function, we employed single-cell-matched TCRαß and targeted gene expression sequencing. Expanded T cell clones exhibited a terminally differentiated, immunosenescent, and polyfunctional phenotype whereas rare clones were less differentiated. Clonal expansion occurring between pre- and 3 mo posttransplant was accompanied by enhancement of polyfunctionality. In contrast, polyfunctionality and differentiation state were largely maintained between 3 and 12 mo posttransplant. Highly expanded clones had a higher degree of polyfunctionality than rare clones. Thus, CMV-responsive CD8 T cells differentiated during the pre- to posttransplant period then maintained their differentiation state and functional capacity despite posttransplant clonal expansion.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/physiology , Heart Transplantation , Kidney Transplantation , Adult , Aged , Antigens, Viral/immunology , Cell Differentiation , Cell Proliferation , Clone Cells , Female , Humans , Immunologic Memory , Lymphocyte Activation , Male , Middle Aged , Postoperative Complications , Receptors, Antigen, T-Cell, alpha-beta/genetics , Single-Cell Analysis
8.
J Immunol ; 207(8): 2077-2085, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34551964

ABSTRACT

CMV infection is a significant complication after solid organ transplantation. We used single cell TCR αß sequencing to determine how memory inflation impacts clonality and diversity of the CMV-responsive CD8 and CD4 T cell repertoire in the first year after transplantation in human subjects. We observed CD8 T cell inflation but no changes in clonal diversity, indicating homeostatic stability in clones. In contrast, the CD4 repertoire was diverse and stable over time, with no evidence of CMV-responsive CD4 T cell expansion. We identified shared CDR3 TCR motifs among patients but no public CMV-specific TCRs. Temporal changes in clonality in response to transplantation and in the absence of detectable viral reactivation suggest changes in the repertoire immediately after transplantation followed by an expansion with stable clonal competition that may mediate protection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/physiology , Graft Rejection/immunology , Heart Transplantation , Kidney Transplantation , Adult , Aged , Antigens, Viral/immunology , Cell Proliferation , Clone Cells , Female , Genetic Variation , Humans , Immunologic Memory , Male , Middle Aged , Receptors, Antigen, T-Cell, alpha-beta/genetics , Transplantation, Homologous , Virus Activation/immunology
9.
bioRxiv ; 2021 Dec 25.
Article in English | MEDLINE | ID: mdl-34981055

ABSTRACT

Previous reports show that Ly49 + CD8 + T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8 + T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR + CD8 + T cells can efficiently eliminate pathogenic gliadin-specific CD4 + T cells from Celiac disease (CeD) patients' leukocytes in vitro . Furthermore, we observe elevated levels of KIR + CD8 + T cells, but not CD4 + regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR + CD8 + T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8 + T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells. ONE-SENTENCE SUMMARY: Here we identified KIR + CD8 + T cells as a regulatory CD8 + T cell subset in humans that suppresses self-reactive or otherwise pathogenic CD4 + T cells.

10.
Cell ; 181(7): 1445-1449, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32533917

ABSTRACT

The COVID19 crisis has magnified the issues plaguing academic science, but it has also provided the scientific establishment with an unprecedented opportunity to reset. Shoring up the foundation of academic science will require a concerted effort between funding agencies, universities, and the public to rethink how we support scientists, with a special emphasis on early career researchers.


Subject(s)
Career Mobility , Research Personnel/trends , Research/trends , Achievement , Biomedical Research , Humans , Research Personnel/education , Science/education , Science/trends , Universities
11.
Nature ; 577(7790): 399-404, 2020 01.
Article in English | MEDLINE | ID: mdl-31915375

ABSTRACT

Alzheimer's disease is an incurable neurodegenerative disorder in which neuroinflammation has a critical function1. However, little is known about the contribution of the adaptive immune response in Alzheimer's disease2. Here, using integrated analyses of multiple cohorts, we identify peripheral and central adaptive immune changes in Alzheimer's disease. First, we performed mass cytometry of peripheral blood mononuclear cells and discovered an immune signature of Alzheimer's disease that consists of increased numbers of CD8+ T effector memory CD45RA+ (TEMRA) cells. In a second cohort, we found that CD8+ TEMRA cells were negatively associated with cognition. Furthermore, single-cell RNA sequencing revealed that T cell receptor (TCR) signalling was enhanced in these cells. Notably, by using several strategies of single-cell TCR sequencing in a third cohort, we discovered clonally expanded CD8+ TEMRA cells in the cerebrospinal fluid of patients with Alzheimer's disease. Finally, we used machine learning, cloning and peptide screens to demonstrate the specificity of clonally expanded TCRs in the cerebrospinal fluid of patients with Alzheimer's disease to two separate Epstein-Barr virus antigens. These results reveal an adaptive immune response in the blood and cerebrospinal fluid in Alzheimer's disease and provide evidence of clonal, antigen-experienced T cells patrolling the intrathecal space of brains affected by age-related neurodegeneration.


Subject(s)
Alzheimer Disease/immunology , CD8-Positive T-Lymphocytes/immunology , Cerebrospinal Fluid/immunology , Aged , Amino Acid Sequence , Cohort Studies , Humans , Immunologic Memory , Middle Aged , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Sequence Analysis, Protein
12.
Nature ; 572(7770): 481-487, 2019 08.
Article in English | MEDLINE | ID: mdl-31391585

ABSTRACT

Experimental autoimmune encephalomyelitis is a model for multiple sclerosis. Here we show that induction generates successive waves of clonally expanded CD4+, CD8+ and γδ+ T cells in the blood and central nervous system, similar to gluten-challenge studies of patients with coeliac disease. We also find major expansions of CD8+ T cells in patients with multiple sclerosis. In autoimmune encephalomyelitis, we find that most expanded CD4+ T cells are specific for the inducing myelin peptide MOG35-55. By contrast, surrogate peptides derived from a yeast peptide major histocompatibility complex library of some of the clonally expanded CD8+ T cells inhibit disease by suppressing the proliferation of MOG-specific CD4+ T cells. These results suggest that the induction of autoreactive CD4+ T cells triggers an opposing mobilization of regulatory CD8+ T cells.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Adult , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Celiac Disease , Clone Cells/cytology , Clone Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , H-2 Antigens/immunology , Humans , Immunization , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myelin-Associated Glycoprotein/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Young Adult
13.
Nature ; 571(7764): 205-210, 2019 07.
Article in English | MEDLINE | ID: mdl-31270459

ABSTRACT

The mammalian brain contains neurogenic niches that comprise neural stem cells and other cell types. Neurogenic niches become less functional with age, but how they change during ageing remains unclear. Here we perform single-cell RNA sequencing of young and old neurogenic niches in mice. The analysis of 14,685 single-cell transcriptomes reveals a decrease in activated neural stem cells, changes in endothelial cells and microglia, and an infiltration of T cells in old neurogenic niches. T cells in old brains are clonally expanded and are generally distinct from those in old blood, which suggests that they may experience specific antigens. T cells in old brains also express interferon-γ, and the subset of neural stem cells that has a high interferon response shows decreased proliferation in vivo. We find that T cells can inhibit the proliferation of neural stem cells in co-cultures and in vivo, in part by secreting interferon-γ. Our study reveals an interaction between T cells and neural stem cells in old brains, opening potential avenues through which to counteract age-related decline in brain function.


Subject(s)
Aging/physiology , Brain/cytology , Cell Movement , Neural Stem Cells/cytology , Neurogenesis , Single-Cell Analysis , Stem Cell Niche/physiology , T-Lymphocytes/cytology , Animals , Blood , Cell Proliferation , Clone Cells/cytology , Coculture Techniques , Endothelial Cells/cytology , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Sequence Analysis, RNA , Signal Transduction , T-Lymphocytes/metabolism , Transcriptome/genetics
14.
Nat Med ; 24(5): 580-590, 2018 05.
Article in English | MEDLINE | ID: mdl-29686426

ABSTRACT

T cells create vast amounts of diversity in the genes that encode their T cell receptors (TCRs), which enables individual clones to recognize specific peptide-major histocompatibility complex (MHC) ligands. Here we combined sequencing of the TCR-encoding genes with assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. By using this approach, termed transcript-indexed ATAC-seq (T-ATAC-seq), we identified epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers and primary leukemic T cells from patient samples. In peripheral blood CD4+ T cells from healthy individuals, we identified cis and trans regulators of naive and memory T cell states and found substantial heterogeneity in surface-marker-defined T cell populations. In patients with a leukemic form of cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by allowing separation of the signals that arose from the malignant clone from the background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity and immunotherapy.


Subject(s)
Chromatin/metabolism , High-Throughput Nucleotide Sequencing/methods , Transposases/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cell Line, Transformed , Clone Cells , Epigenomics , Humans , Immunity , Jurkat Cells , Leukemia/immunology , Leukemia/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis
15.
Immunity ; 48(2): 350-363.e7, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29426701

ABSTRACT

Despite evidence that γδ T cells play an important role during malaria, their precise role remains unclear. During murine malaria induced by Plasmodium chabaudi infection and in human P. falciparum infection, we found that γδ T cells expanded rapidly after resolution of acute parasitemia, in contrast to αß T cells that expanded at the acute stage and then declined. Single-cell sequencing showed that TRAV15N-1 (Vδ6.3) γδ T cells were clonally expanded in mice and had convergent complementarity-determining region 3 sequences. These γδ T cells expressed specific cytokines, M-CSF, CCL5, CCL3, which are known to act on myeloid cells, indicating that this γδ T cell subset might have distinct functions. Both γδ T cells and M-CSF were necessary for preventing parasitemic recurrence. These findings point to an M-CSF-producing γδ T cell subset that fulfills a specialized protective role in the later stage of malaria infection when αß T cells have declined.


Subject(s)
Macrophage Colony-Stimulating Factor/physiology , Malaria/prevention & control , Receptors, Antigen, T-Cell, gamma-delta/physiology , T-Lymphocyte Subsets/immunology , Animals , Female , Humans , Lymphocyte Activation , Malaria/immunology , Mice , Parasitemia/prevention & control , Recurrence
16.
Genome Biol ; 16: 28, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25886764

ABSTRACT

BACKGROUND: The prevalence of some autoimmune diseases is greater in females compared with males, although disease severity is often greater in males. The reason for this sexual dimorphism is unknown, but it may reflect negative selection of Y chromosome-bearing sperm during spermatogenesis or male fetuses early in the course of conception/pregnancy. Previously, we showed that the sexual dimorphism in experimental autoimmune encephalomyelitis (EAE) is associated with copy number variation (CNV) in Y chromosome multicopy genes. Here, we test the hypothesis that CNV in Y chromosome multicopy genes influences the paternal parent-of-origin effect on EAE susceptibility in female mice. RESULTS: We show that C57BL/6 J consomic strains of mice possessing an identical X chromosome and CNV in Y chromosome multicopy genes exhibit sperm head abnormalities and female-biased sex ratio. This is consistent with X-Y intragenomic conflict arising from an imbalance in CNV between homologous X:Y chromosome multicopy genes. These males also display paternal transmission of EAE to female offspring and differential loading of microRNAs within the sperm nucleus. Furthermore, in humans, families of probands with multiple sclerosis similarly exhibit a female-biased sex ratio, whereas families of probands affected with non-sexually dimorphic autoimmune diseases exhibit unbiased sex ratios. CONCLUSIONS: These findings provide evidence for a mechanism at the level of the male gamete that contributes to the sexual dimorphism in EAE and paternal parent-of-origin effects in female mice, raising the possibility that a similar mechanism may contribute to the sexual dimorphism in multiple sclerosis.


Subject(s)
Autoimmune Diseases/genetics , DNA Copy Number Variations/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Gene Dosage , Genetic Linkage , Sex Characteristics , Y Chromosome/genetics , Animals , Animals, Newborn , CD4-Positive T-Lymphocytes/metabolism , Cytokines/biosynthesis , Female , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Inheritance Patterns/genetics , Linear Models , Lymphocyte Activation/immunology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , Sex Ratio , Spermatogenesis/genetics , Spermatozoa/metabolism , X Chromosome/genetics
17.
PLoS One ; 10(2): e0117993, 2015.
Article in English | MEDLINE | ID: mdl-25671658

ABSTRACT

Multiple sclerosis (MS) is a debilitating chronic inflammatory disease of the nervous system that affects approximately 2.3 million individuals worldwide, with higher prevalence in females, and a strong genetic component. While over 200 MS susceptibility loci have been identified in GWAS, the underlying mechanisms whereby they contribute to disease susceptibility remains ill-defined. Forward genetics approaches using conventional laboratory mouse strains are useful in identifying and functionally dissecting genes controlling disease-relevant phenotypes, but are hindered by the limited genetic diversity represented in such strains. To address this, we have combined the powerful chromosome substitution (consomic) strain approach with the genetic diversity of a wild-derived inbred mouse strain. Using experimental allergic encephalomyelitis (EAE), a mouse model of MS, we evaluated genetic control of disease course among a panel of 26 consomic strains of mice inheriting chromosomes from the wild-derived PWD strain on the C57BL/6J background, which models the genetic diversity seen in human populations. Nineteen linkages on 18 chromosomes were found to harbor loci controlling EAE. Of these 19 linkages, six were male-specific, four were female-specific, and nine were non-sex-specific, consistent with a differential genetic control of disease course between males and females. An MS-GWAS candidate-driven bioinformatic analysis using orthologous genes linked to EAE course identified sex-specific and non-sex-specific gene networks underlying disease pathogenesis. An analysis of sex hormone regulation of genes within these networks identified several key molecules, prominently including the MAP kinase family, known hormone-dependent regulators of sex differences in EAE course. Importantly, our results provide the framework by which consomic mouse strains with overall genome-wide genetic diversity, approximating that seen in humans, can be used as a rapid and powerful tool for modeling the genetic architecture of MS. Moreover, our data represent the first step towards mechanistic dissection of genetic control of sexual dimorphism in CNS autoimmunity.


Subject(s)
Autoimmunity/genetics , Autoimmunity/physiology , Central Nervous System/immunology , Sex Characteristics , Animals , Chromosome Mapping , Chromosomes, Mammalian/genetics , Computer Simulation , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Genetic Variation , Genomics , Gonadal Steroid Hormones/metabolism , Male , Mice , Signal Transduction
18.
FASEB J ; 28(4): 1898-909, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24371118

ABSTRACT

Histamine and its receptors are important in both multiple sclerosis and experimental allergic encephalomyelitis (EAE). C57BL/6J (B6) mice deficient for the histamine H2 receptor (H2RKO) are less susceptible to EAE and exhibit blunted Th1 responses. However, whether decreased antigen-specific T-cell effector responses in H2RKO mice were due to a lack of H2R signaling in CD4(+) T cells or antigen-presenting cells has remained unclear. We generated transgenic mice expressing H2R specifically in T cells on the H2RKO background, and, using wild-type B6 and H2RKO mice as controls, induced EAE either in the presence or absence of the ancillary adjuvant pertussis toxin (PTX), which models the effects of infectious inflammatory stimuli on autoimmune disease. We monitored the mice for clinical signs of EAE and neuropathology, as well as effector T-cell responses using flow cytometry. EAE severity and neuropathology in H2RKO mice expressing H2R exclusively in T cells become equal to those in wild-type B6 mice only when PTX is used to elicit disease. EAE complementation was associated with frequencies of CD4(+)IFN-γ(+) and CD4(+)IL-17(+) cells that are equal to or greater than those in wild-type B6, respectively. Thus, the regulation of encephalitogenic T-cell responses and EAE susceptibility by H2R signaling in CD4(+) T cells is dependent on gene × environment interactions.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Receptors, Histamine H2/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Flow Cytometry , Gene Expression/immunology , Genetic Predisposition to Disease , HEK293 Cells , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-17/immunology , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/immunology , Myelin-Oligodendrocyte Glycoprotein/toxicity , Peptide Fragments/administration & dosage , Peptide Fragments/immunology , Peptide Fragments/toxicity , Pertussis Toxin/administration & dosage , Pertussis Toxin/immunology , Receptors, Histamine H2/genetics , Receptors, Histamine H2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Severity of Illness Index , Signal Transduction/genetics , T-Lymphocytes/metabolism
19.
J Immunol ; 191(2): 614-22, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23772030

ABSTRACT

Histamine (HA) is a key regulator of experimental allergic encephalomyelitis (EAE), the autoimmune model of multiple sclerosis. HA exerts its effects through four known G-protein-coupled receptors: H1, H2, H3, and H4 (histamine receptors; H(1-4)R). Using HR-deficient mice, our laboratory has demonstrated that H1R, H2R, H3R, and H4R play important roles in EAE pathogenesis, by regulating encephalitogenic T cell responses, cytokine production by APCs, blood-brain barrier permeability, and T regulatory cell activity, respectively. Histidine decarboxylase-deficient mice (HDCKO), which lack systemic HA, exhibit more severe EAE and increased Th1 effector cytokine production by splenocytes in response to myelin oligodendrocyte gp35-55. In an inverse approach, we tested the effect of depleting systemic canonical HA signaling on susceptibility to EAE by generating mice lacking all four known G-protein-coupled-HRs (H(1-4)RKO mice). In this article, we report that in contrast to HDCKO mice, H(1-4)RKO mice develop less severe EAE compared with wild-type animals. Furthermore, splenocytes from immunized H(1-4)RKO mice, compared with wild-type mice, produce a lower amount of Th1/Th17 effector cytokines. The opposing results seen between HDCKO and H1-4RKO mice suggest that HA may signal independently of H1-4R and support the existence of an alternative HAergic pathway in regulating EAE resistance. Understanding and exploiting this pathway has the potential to lead to new disease-modifying therapies in multiple sclerosis and other autoimmune and allergic diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Histamine/metabolism , Histidine Decarboxylase/genetics , Receptors, Histamine/genetics , Receptors, Histamine/metabolism , Animals , Antigen-Presenting Cells , Blood-Brain Barrier/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cells, Cultured , Cytokines/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/metabolism , Histidine Decarboxylase/deficiency , Histidine Decarboxylase/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/pharmacology , Peptide Fragments/pharmacology , Receptors, Histamine/deficiency , Signal Transduction
20.
Genome Res ; 23(9): 1474-85, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23800453

ABSTRACT

Understanding the DNA elements that constitute and control the regulatory genome is critical for the appropriate therapeutic management of complex diseases. Here, using chromosome Y (ChrY) consomic mouse strains on the C57BL/6J (B6) background, we show that susceptibility to two diverse animal models of autoimmune disease, experimental allergic encephalomyelitis (EAE) and experimental myocarditis, correlates with the natural variation in copy number of Sly and Rbmy multicopy ChrY genes. On the B6 background, ChrY possesses gene regulatory properties that impact genome-wide gene expression in pathogenic CD4(+) T cells. Using a ChrY consomic strain on the SJL background, we discovered a preference for ChrY-mediated gene regulation in macrophages, the immune cell subset underlying the EAE sexual dimorphism in SJL mice, rather than CD4(+) T cells. Importantly, in both genetic backgrounds, an inverse correlation exists between the number of Sly and Rbmy ChrY gene copies and the number of significantly up-regulated genes in immune cells, thereby supporting a link between copy number variation of Sly and Rbmy with the ChrY genetic element exerting regulatory properties. Additionally, we show that ChrY polymorphism can determine the sexual dimorphism in EAE and myocarditis. In humans, an analysis of the CD4(+) T cell transcriptome from male multiple sclerosis patients versus healthy controls provides further evidence for an evolutionarily conserved mechanism of gene regulation by ChrY. Thus, as in Drosophila, these data establish the mammalian ChrY as a member of the regulatory genome due to its ability to epigenetically regulate genome-wide gene expression in immune cells.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Genetic Predisposition to Disease , Macrophages/metabolism , Myocarditis/genetics , Transcriptome , Y Chromosome/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport , Animals , DNA Copy Number Variations , Female , Gene Dosage , Humans , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...