Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 34(10): 1325-33, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11522312

ABSTRACT

The clinical success of polished tapered stems has been widely reported in numerous long term studies. The mechanical environment that exists for polished tapered stems, however, is not fully understood. In this investigation, a collarless, tapered femoral total hip stem with an unsupported distal tip was evaluated using a 'physiological' three-dimensional (3D) finite element analysis. It was hypothesized that stem-cement interface friction, which alters the magnitude and orientation of the cement mantle stress, would subsequently influence stem 'taper-lock' and viscoelastic relaxation of bone cement stresses. The hypothesis that creep-induced subsidence would result in increases to stem-cement normal (radial) interface stresses was also examined. Utilizing a viscoelastic material model for the bone cement in the analysis, three different stem-cement interface conditions were considered: debonded stem with zero friction coefficient (mu=0) (frictionless), debonded stem with stem-cement interface friction (mu=0.22) ('smooth' or polished) and a completely bonded stem ('rough'). Stem roughness had a profound influence on cement mantle stress, stem subsidence and cement mantle stress relaxation over the 24-h test period. The frictionless and smooth tapered stems generated compressive normal stress at the stem-cement interface creating a mechanical environment indicative of 'taper-lock'. The normal stress increased with decreasing stem-cement interface friction but decreased proximally with time and stem subsidence. Stem subsidence also increased with decreasing stem-cement interface friction. We conclude that polished stems have a greater potential to develop 'taper-lock' fixation than do rough stems. However, subsidence is not an important determinant of the maintenance of 'taper-lock'. Rather subsidence is a function of stem-cement interface friction and bone cement creep.


Subject(s)
Bone Cements/standards , Finite Element Analysis , Hip Prosthesis/standards , Aged , Biocompatible Materials , Biomechanical Phenomena , Femur/physiology , Humans , Male , Materials Testing , Prosthesis Failure , Surface Properties , Viscosity
2.
J Biomech Eng ; 118(3): 399-404, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8872263

ABSTRACT

A tapered femoral total hip stem with a debonded stem-cement interface and an unsupported distal tip subjected to constant axial load was evaluated using two-dimensional (2D) axisymmetric finite element analysis. The analysis was performed to test if the mechanical condition suggest that a "taper-lock" with a debonded viscoelastic bone cement might be an alternative approach to cement fixation of stem type cemented hip prosthesis. Effect of stem-cement interface conditions (bonded, debonded with and without friction) and viscoelastic response (creep and relaxation) of acrylic bone cement on cement mantle stresses and axial displacement of the stem was also investigated. Stem debonding with friction increased maximum cement von Mises stress by approximately 50 percent when compared to the bonded stem. Of the stress components in the cement mantle, radial stresses were compressive and hoop stresses were tensile and were indicative of mechanical taper-lock. Cement mantle stress, creep and stress relaxation and stem displacement increased with increasing load level and with decreasing stem-cement interface friction. Stress relaxation occur predominately in tensile hoop stress and decreased from 1 to 46 percent over the conditions considered. Stem displacement due to cement mantle creep ranged from 614 microns to 1.3 microns in 24 hours depending upon interface conditions and load level.


Subject(s)
Bone Cements/standards , Computer Simulation , Hip Prosthesis/standards , Numerical Analysis, Computer-Assisted , Biomechanical Phenomena , Hip Prosthesis/instrumentation , Humans , Materials Testing , Prosthesis Design , Prosthesis Failure , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...