Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011743

ABSTRACT

One possible result of low-level characteristics in the traditional von Neumann formulation system is brain-inspired photonics technology based on human brain idea. Optoelectronic neural devices, which are accustomed to imitating the sensory role of biological synapses by adjusting connection measures, can be used to fabricate highly reliable neurologically calculating devices. In this case, nanosized materials and device designs are attracting attention since they provide numerous potential benefits in terms of limited cool contact, rapid transfer fluidity, and the capture of photocarriers. In addition, the combination of classic nanosized photodetectors with recently generated digital synapses offers promising results in a variety of practical applications, such as data processing and computation. Herein, we present the progress in constructing improved optoelectronic synaptic devices that rely on nanomaterials, for example, 0-dimensional (quantum dots), 1-dimensional, and 2-dimensional composites, besides the continuously developing mixed heterostructures. Furthermore, the challenges and potential prospects linked with this field of study are discussed in this paper.

2.
Int J Mol Sci ; 25(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38256105

ABSTRACT

This study investigates the efficacy of adsorbents from locally sourced olive waste-encompassing olive skins, leaves, and pits, recovered from the initial centrifugation of olives (OWP)-and a composite with sodium alginate (OWPSA) for the removal of Cu2+ ions from synthetic wastewater. Experimental analyses conducted at room temperature, with an initial Cu2+ concentration of 50 mg/L and a solid/liquid ratio of 1 g/L, showed that the removal efficiencies were approximately 79.54% and 94.54% for OWP and OWPSA, respectively, highlighting the positive impact of alginate on adsorption capacity. Utilizing statistical physics isotherm models, particularly the single-layer model coupled to real gas (SLMRG), allowed us to robustly fit the experimental data, providing insights into the adsorption mechanisms. Thermodynamic parameters affirmed the spontaneity and endothermic nature of the processes. Adsorption kinetics were interpreted effectively using the pseudo-second-order (PSO) model. Molecular modeling investigations, including the conductor-like screening model for real solvents (COSMO-RS), density functional theory (DFT), and atom-in-molecule (AIM) analysis, unveiled intricate molecular interactions among the adsorbent components-cellulose, hemicellulose, lignin, and alginate-and the pollutant Cu2+, confirming their physically interactive nature. These findings emphasize the synergistic application of experimental and theoretical approaches, providing a comprehensive understanding of copper adsorption dynamics at the molecular level. This methodology holds promise for unraveling intricate processes across various adsorbent materials in wastewater treatment applications.


Subject(s)
Olea , Copper , Wastewater , Adsorption , Alginates
3.
Materials (Basel) ; 16(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37297216

ABSTRACT

In this study, a new eco-friendly kaolinite-cellulose (Kaol/Cel) composite was prepared from waste red bean peels (Phaseolus vulgaris) as a source of cellulose to serve as a promising and effective adsorbent for the removal of crystal violet (CV) dye from aqueous solutions. Its characteristics were investigated through the use of X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and zero-point of charge (pHpzc). The Box-Behnken design was used to improve CV adsorption on the composite by testing its primary affecting factors: loading Cel into the composite matrix of Kaol (A: 0-50%), adsorbent dosage (B: 0.02-0.05 g), pH (C: 4-10), temperature (D: 30-60 °C), and duration (E: 5-60 min). The significant interactions with the greatest CV elimination efficiency (99.86%) are as follows: BC (adsorbent dose vs. pH) and BD (adsorbent dose vs. temperature) at optimum parameters (A: 25%, B: 0.05 g, C: 10, D: 45 °C, and E: 17.5 min) for which the CV's best adsorption capacity (294.12 mg/g) was recorded. The Freundlich and pseudo-second-order kinetic models were the best isotherm and kinetic models fitting our results. Furthermore, the study investigated the mechanisms responsible for eliminating CV by utilizing Kaol/Cel-25. It detected multiple types of associations, including electrostatic, n-π, dipole-dipole, hydrogen bonding interactions, and Yoshida hydrogen bonding. These findings suggest that Kaol/Cel could be a promising starting material for developing a highly efficient adsorbent that can remove cationic dyes from aqueous environments.

4.
Water Sci Technol ; 85(6): 1952-1963, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35358081

ABSTRACT

Water conservation is a critical issue, particularly in arid countries and countries that suffer a lack of natural water resources. Jordan is one of the most water-scarce countries in the world; this fact has forced the search for alternative sustainable solutions. With the support of several regional and international organizations, tens of projects were implemented across the country over the past 30 years that aimed to reuse greywater in rural communities. The current review provides a wide overview of Jordan's experience in greywater treatment and its reuse for non-potable purposes in rural areas. To the best knowledge of the authors, the present review is the first to assess the Jordanian experience in this field. Many governmental authorities and non-governmental organizations have been involved in Jordan's experience. The greywater reuse systems were established to achieve advantageous environmental and socio-economic consequences on the rural communities. The strategy of greywater treatment was based on a local on-site greywater treatment system in households or the so-called 'autonomous water management'. The applied greywater treatment technologies in households were found efficient in rendering greywater adequate for agricultural uses. However, further improvements and territorial expansion of the experiment are needed.


Subject(s)
Agriculture , Rural Population , Humans , Jordan
SELECTION OF CITATIONS
SEARCH DETAIL
...