Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38869545

ABSTRACT

A sequence of dye-sensitized solar cells is proposed, utilizing TiO2@Zn/Al-layered double hydroxide (LDH) as their starting materials, in which Ruthenizer N719 was used as a photon absorber. The anticipated system was turned into sheet-like TiO2@mixed metal oxide (MMO) via post-processing treatment. The crystal quality indicated a relation to power conversion efficiency (PCE); this was combined with a comparable morphology profile. In detail, the optimum DSSC device exhibited average sheet-like thickness and a dye loading amount of 43.11 nm and 4.28 ×10-3 mM/cm-2, respectively. Concurrently, a considerable PCE enhancement of the optimum DSSC device (TiO2@MMO-550°) was attained compared to pristine MMO (0.91%), which could be due to boosted electron transfer efficiency. Of the fabricated devices, DSSC fabricated at 550° exhibited the highest PCE (1.91%), with a 35.6% enhancement compared to that obtained at 450°, as a result of its increased open-circuit voltage (3.29 mA/cm2) and short-circuit current (0.81 V). The proposed work delivers an enhanced efficiency as compared to similar geometries.

2.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903680

ABSTRACT

In this manuscript, a series of dye-sensitized solar cells (DSSCs) were fabricated as a function of post-processing temperature based on mesoporous CuO@Zn(Al)O-mixed metal oxides (MMO) in conjunction with dye N719 as the main light absorber; the proposed CuO@Zn(Al)O geometry was, in turn, attained using Zn/Al-layered double hydroxide (LDH) as a precursor via combination of co-precipitation and hydrothermal techniques. In particular, the dye loading amount onto the deposited mesoporous materials was anticipated via regression equation-based UV-Vis technique analysis, which evidently demonstrated a robust correlation along with the fabricated DSSCs power conversion efficiency. In detail, of the DSSCs assembled, CuO@MMO-550 exhibited short-circuit current (JSC) and open-circuit voltage (VOC) of 3.42 (mA/cm2) and 0.67 (V) which result in significant fill factor and power conversion efficiency of 0.55% and 1.24%, respectively. This could mainly be due to the relatively high surface area of 51.27 (m2/g) which in turn validates considerable dye loading amount of 0.246 (mM/cm-2).

3.
Nanomaterials (Basel) ; 12(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35564186

ABSTRACT

This study reports a simple new technique for the preparation of novel hexagonal-shaped mixed metal oxides (MMO) nanorods using Zn/Al-layered double hydroxide (LDH) as a precursor for dye-sensitized solar cell (DSSC) application. The effect of the Zn to Al molar ratio demonstrated a sound correlation between the obtained nanorods' diameter and the fabricated DSSCs efficiency. Additionally, the optical behavior of the fabricated MMO film as well as the absorption enhancement due to the utilized dye are also demonstrated; a cut-off phenomenon at around 376 nm corresponds to the attained hexagonal nanorods. The open-circuit voltage augmented noticeably from 0.6 to 0.64 V alongside an increase in the diameter of nanorods from 64 to 80 nm. The results indicated that an increment in the diameter of the nanorods is desirable due to the enhanced surface area through which a higher amount of dye N719 was loaded (0.35 mM/cm2). This, in turn, expedited the transport of electrons within the MMO matrix resulting in an advanced short-circuit current. Of the devices fabricated, ZA-8 exhibited the highest fill factor and efficiency of 0.37% and 0.69%, respectively, because of its boosted short-circuit current and open-circuit voltage.

SELECTION OF CITATIONS
SEARCH DETAIL
...