Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 174: 362-370, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38101232

ABSTRACT

Large amounts of titanium white waste are generated in the production of titanium dioxide using sulphate method, which in turn can be used to prepare LiFePO4 cathode material, thereby reducing environmental risks and achieving resource recovery. However, a key challenge lies in the elimination of impurities. In this work, a cost-efficient and straightforward approach based on phase transformation during hydrothermal treatment was proposed to utilize titanium white waste with calcium dihydrogen phosphate for the preparation of LiFePO4 cathode material. The content of Fe in the leachate was enriched to 81.5 g/L after purification, while 99.9 % of Ti and 98.36 % of Al and were successfully removed. In the subsequent process for Fe/P mother liquor preparation, the losses of Fe and P were only 5.82 % and 2.81 %, respectively. The Fe and P contents of the synthesized FePO4 product were 29.47 % and 17.08 %, respectively, and the Fe/P molar ratio was 0.986. Crystal phase of the product matched well with standard iron phosphate, and the lamellar microstructure of FePO4 was uniform with the particle size ranging from 3 to 5 µm. Moreover, the contents of impurities in the product were far below the standard. The initial discharge of LiFePO4 synthesized by the iron phosphate was 160.6 mAh.g-1 at 0.1C and maintained good reversible capacity after 100 cycles. This work may provide new strategy for preparing LiFePO4 cathode material from industrial solid waste.


Subject(s)
Calcium Phosphates , Ferric Compounds , Iron , Lithium , Titanium , Iron/chemistry , Lithium/chemistry , Calcium , Phosphates/chemistry , Electrodes
2.
Gels ; 9(2)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36826322

ABSTRACT

Although Cs(I) and Sr(II) are not strategic and hazardous metal ions, their recovery from aqueous solutions is of great concern for the nuclear industry. The objective of this work consists of designing a new sorbent for the simultaneous recovery of these metals with selectivity against other metals. The strategy is based on the functionalization of algal/polyethyleneimine hydrogel beads by phosphonation. The materials are characterized by textural, thermo-degradation, FTIR, elemental, titration, and SEM-EDX analyses to confirm the chemical modification. To evaluate the validity of this modification, the sorption of Cs(I) and Sr(II) is compared with pristine support under different operating conditions: the pH effect, kinetics, and isotherms are investigated in mono-component and binary solutions, before investigating the selectivity (against competitor metals) and the possibility to reuse the sorbent. The functionalized sorbent shows a preference for Sr(II), enhanced sorption capacities, a higher stability at recycling, and greater selectivity against alkali, alkaline-earth, and heavy metal ions. Finally, the sorption properties are compared for Cs(I) and Sr(II) removal in a complex solution (seawater sample). The combination of these results confirms the superiority of phosphonated sorbent over pristine support with promising performances to be further evaluated with effluents containing radionuclides.

3.
Polymers (Basel) ; 13(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066682

ABSTRACT

High-tech applications require increasing amounts of rare earth elements (REE). Their recovery from low-grade minerals and their recycling from secondary sources (as waste materials) are of critical importance. There is increasing attention paid to the development of new sorbents for REE recovery from dilute solutions. A new generation of composite sorbents based on brown algal biomass (alginate) and polyethylenimine (PEI) was recently developed (ALPEI hydrogel beads). The phosphorylation of the beads strongly improves the affinity of the sorbents for REEs (such as La and Tb): by 4.5 to 6.9 times compared with raw beads. The synthesis procedure (epicholorhydrin-activation, phosphorylation and de-esterification) is investigated by XPS and FTIR for characterizing the grafting route but also for interpreting the binding mechanism (contribution of N-bearing from PEI, O-bearing from alginate and P-bearing groups). Metal ions can be readily eluted using an acidic calcium chloride solution, which regenerates the sorbent: the FTIR spectra are hardly changed after five successive cycles of sorption and desorption. The materials are also characterized by elemental, textural and thermogravimetric analyses. The phosphorylation of ALPEI beads by this new method opens promising perspectives for the recovery of these strategic metals from mild acid solutions (i.e., pH ~ 4).

4.
Molecules ; 26(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671351

ABSTRACT

The strong demand for rare-earth elements (REEs) is driven by their wide use in high-tech devices. New processes have to be developed for valorizing low-grade ores or alternative metal sources (such as wastes and spent materials). The present work contributed to the development of new sorbents for the recovery of rare earth ions from aqueous solutions. Functionalized mesoporous silica composite was synthesized by grafting diethylenetriamine onto composite support. The physical and chemical properties of the new sorbent are characterized using BET, TGA, elemental analysis, titration, FTIR, and XPS spectroscopies to identify the reactive groups (amine groups: 3.25 mmol N g-1 and 3.41 by EA and titration, respectively) and their mode of interaction with Nd(III) and Gd(III). The sorption capacity at the optimum pH (i.e., 4) reaches 0.9 mmol Nd g-1 and 1 mmol Gd g-1. Uptake kinetics are modeled by the pseudo-first-order rate equation (equilibrium time: 30-40 min). At pH close to 4-5, the sorbent shows high selectivity for rare-earth elements against alkali-earth elements. This selectivity is confirmed by the efficient recovery of REEs from acidic leachates of gibbsite ore. After elution (using 0.5 M HCl solutions), selective precipitation (using oxalate solutions), and calcination, pure rare earth oxides were obtained. The sorbent shows promising perspective due to its high and fast sorption properties for REEs, good recycling, and high selectivity.


Subject(s)
Amines/chemistry , Gadolinium/chemistry , Neodymium/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Adsorption , Hydrogen-Ion Concentration , Industrial Waste/analysis , Kinetics , Photoelectron Spectroscopy , Porosity , Solutions , Spectroscopy, Fourier Transform Infrared
5.
Sci Total Environ ; 719: 137396, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32143096

ABSTRACT

Composite beads (APEI*), obtained by the controlled interaction of algal biomass with PEI, followed by ionotropic gelation and crosslinking processes using CaCl2/glutaraldehyde solution, constitute efficient supports for metal binding. The quaternization of algal/PEI beads (Q-APEI*) significantly increases the sorption properties of the composite beads (APEI*) for As(V). The materials are characterized by SEM/EDX, TGA, BET, elemental analysis, FTIR, XPS, and titration. The sorption of As(V) is studied in function of pH while sorption mechanism is discussed in function of metal speciation and surface characteristics of the sorbent. Optimum sorption occurs at pH close to 7. Fast uptake kinetics, correlated to textural properties are successfully fitted by pseudo-first order rate equation and the Crank equation (for resistance to intraparticle diffusion); equilibrium is reached with 45-60 min. The Langmuir equation finely fits sorption isotherms; maximum sorption capacity reaches 1.34 mmol As g-1. Arsenic can be completely eluted using 0.5 M CaCl2/0.5 M HCl solutions; the sorbent maintains high sorption and desorption efficiencies for a minimum of 5 cycles. The sorbent is tested for the removal of As(V) from mining effluents containing high concentration of iron and traces of zinc. At pH 3, the sorbent shows remarkable selectivity for As(V) over Fe. After controlling the initial pH to 5, a sorbent dosage of 2 g L-1 is sufficient for achieving the complete recovery of As(V) from mining effluent (corresponding to initial concentration of 1.295 mmol As L-1).


Subject(s)
Polyethyleneimine/chemistry , Adsorption , Arsenic , Hydrogen-Ion Concentration , Kinetics , Solutions , Stramenopiles , Water , Water Pollutants, Chemical
6.
Molecules ; 24(21)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671819

ABSTRACT

There is a need for developing new sorbents that incorporate renewable resources for the treatment of metal-containing solutions. Algal-polyethyleneimine beads (APEI) (reinforced with alginate) are functionalized by grafting amidoxime groups (AO-APEI). Physicochemical characteristics of the new material are characterized using FTIR, XPS, TGA, SEM, SEM-EDX, and BET. AO-APEI beads are tested for the recovery of Sr(II) from synthetic solutions after pH optimization (≈ pH 6). Uptake kinetics is fast (equilibrium ≈ 60-90 min). Sorption isotherm (fitted by the Langmuir equation) shows remarkable sorption capacity (≈ 189 mg Sr g-1). Sr(II) is desorbed using 0.2 M HCl/0.5 M CaCl2 solution; sorbent recycling over five cycles shows high stability in terms of sorption/desorption performances. The presence of competitor cations is studied in relation to the pH; the selectivity for Sr(II) is correlated to the softness parameter. Finally, the recovery of Sr(II) is carried out in complex solutions (seawater samples): AO-APEI is remarkably selective over highly concentrated metal cations such as Na(I), K(I), Mg(II), and Ca(II), with weaker selectivity over B(I) and As(V). AO-APEI appears to be a promising material for selective recovery of strontium from complex solutions (including seawater).


Subject(s)
Microspheres , Oximes/chemistry , Polyethyleneimine/chemistry , Rhodophyta/chemistry , Strontium/isolation & purification , Adsorption , Hydrogen-Ion Concentration , Kinetics , Photoelectron Spectroscopy , Rheology , Seawater/chemistry , Solutions , Temperature , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...