Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 20(10): 1479-1487, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30252010

ABSTRACT

N-Nitrosamines are an important class of potent human carcinogens and mutagens that can be present in water and wastewater. For instance, N-nitrosamines can be formed by reaction of nitrosating agents such as NO+ or N2O3 formed from nitrite under acidic conditions with secondary amine precursors by an acid-catalysed nitrosation pathway. This study investigates the catalytic effect of cationic and anionic micelles on the nitrosation of secondary aliphatic amines in the presence of nitrite at different pH values. The results of this study demonstrate that the nitrosation of hydrophobic secondary amines (e.g., dipropylamine and dibutylamine) by nitrite was significantly enhanced in the presence of micelles of the cationic surfactant cetyltrimethylammonium chloride whereas anionic micelles formed by sodium dodecylsulfate did not significantly enhance the formation of N-nitrosamines. Rate enhancements of up to 100-fold were observed for the formation of N-nitrosodibutylamine in the presence of cetyltrimethylammonium chloride. The magnitude of the catalytic effect of cationic micelles on the nitrosation reaction depended mainly of the hydrophobicity of the amine precursors (i.e., alkyl chain length), the stability and the charge of the micelles and pH. One important enhancement factor is the lowering of the pKa of the precursor alkylammonium ion due to the electrical potential at the micelle-water interface by up to ∼2.5 pH units. These results suggest that cationic micelle-forming surfactants might play a role in the formation of N-nitrosamines in wastewater, consumer products and in industrial processes using high concentrations of cationic surfactants.


Subject(s)
Amines/chemistry , Micelles , Nitrites/chemistry , Nitrosamines/chemical synthesis , Nitrosation , Carcinogens/chemical synthesis , Catalysis , Cetrimonium , Hydrogen-Ion Concentration , Surface-Active Agents , Wastewater , Water Pollutants, Chemical/chemical synthesis
2.
Org Lett ; 14(7): 1748-51, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22404524

ABSTRACT

Copper-catalyzed direct alkylation of benzoxazoles using nonactivated secondary alkyl halides has been developed. The best catalyst is a new copper(I) complex (1), and the reactions are promoted by bis[2-(N,N-dimethylamino)ethyl] ether.


Subject(s)
Benzoxazoles/chemistry , Copper/chemistry , Hydrocarbons, Halogenated/chemistry , Alkylation , Catalysis , Combinatorial Chemistry Techniques , Molecular Structure
3.
Dalton Trans ; 40(35): 8906-11, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21409221

ABSTRACT

An improved synthesis of pincer ligand bis[(2-dimethylamino)phenyl]amine ((Me)N(2)NH) was reported. Reaction of the Li complex of (Me)N(2)N with suitable Pd, Pt, and Ru precursors gave the corresponding metal complexes. The structures of the Pd, Pt, and Ru complexes were determined. The Ru complex showed activity in catalytic transfer hydrogenation of aryl and alkyl ketones.

SELECTION OF CITATIONS
SEARCH DETAIL
...