Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(3): 036107, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29604752

ABSTRACT

We report two techniques to mitigate stripe artifacts in light-sheet fluorescence imaging. The first uses an image processing algorithm called the multidirectional stripe remover method to filter stripes from an existing image. The second uses an elliptical holographic diffuser with strong scattering anisotropy to prevent stripe formation during image acquisition. These techniques facilitate accurate interpretation of image data, especially in denser samples. They are also facile and cost-effective.

2.
Phys Rev E ; 94(4-1): 042705, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841485

ABSTRACT

We present studies of chiral nematic liquid crystals composed of flexible dimer molecules subject to large dc magnetic fields between 0 and 31 T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. The use of magnetic field here instead of electric field allows precise measurements of some material constants and holds promise for wireless tuning of selective reflection.

3.
Phys Rev Lett ; 116(21): 217801, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27284674

ABSTRACT

We have determined the nematic-isotropic transition temperature as a function of an applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15 K when subjected to a 22 T magnetic field. The increase is conjectured to be caused by a magnetic-field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers.

4.
Soft Matter ; 12(21): 4725-30, 2016 May 25.
Article in English | MEDLINE | ID: mdl-27140824

ABSTRACT

The recoil process of free-standing liquid crystal filaments is investigated experimentally and theoretically. We focus on two aspects, the contraction speed of the filament and a spontaneously formed undulation instability. At the moment of rupture, the filaments buckle similarly to the classical Euler buckling of elastic rods. The tip velocity decays with decreasing filament length. The wavelength of buckling affinely decreases with the retracting filament tip. The energy gain related to the decrease of the total length and surface area of the filaments is mainly dissipated by layer rearrangements during thickening of the fibre. A flow back into the meniscus is relevant only in the final stage of the recoil process. We introduce a model for the quantitative description of the filament retraction speed. The dynamics of this recoil behaviour may find relevance as a model for biology-related filaments.

SELECTION OF CITATIONS
SEARCH DETAIL
...