Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22282673

ABSTRACT

The milder clinical manifestations of Omicron infection relative to pre-Omicron SARS-CoV-2 raises the possibility that extensive evolution results in reduced pathogenicity. To test this hypothesis, we quantified induction of cell fusion and cell death in SARS-CoV-2 evolved from ancestral virus during long-term infection. Both cell fusion and death were reduced in Omicron BA.1 infection relative to ancestral virus. Evolved virus was isolated at different times during a 6-month infection in an immunosuppressed individual with advanced HIV disease. The virus isolated 16 days post-reported symptom onset induced fusogenicity and cell death at levels similar to BA.1. However, fusogenicity was increased in virus isolated at 6 months post-symptoms to levels intermediate between BA.1 and ancestral SARS-CoV-2. Similarly, infected cell death showed a graded increase from earlier to later isolates. These results may indicate that, at least by the cellular measures used here, evolution in long-term infection does not necessarily attenuate the virus.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22279197

ABSTRACT

IntroductionThe Omicron BA.1/BA.2 wave in South Africa had lower hospitalisation and mortality than previous SARS-CoV-2 variants and was followed by an Omicron BA.4/BA.5 wave. This study compared admission incidence risk across waves, and the risk of mortality in the Omicron BA.4/BA.5 wave, to the Omicron BA.1/BA.2 and Delta waves. MethodsData from South Africas national hospital surveillance system, SARS-CoV-2 case linelist and Electronic Vaccine Data System were linked and analysed. Wave periods were defined when the country passed a weekly incidence of 30 cases/100,000 people. Mortality rates in the Delta, Omicron BA.1/BA.2 and Omicron BA.4/BA.5 wave periods were compared by post-imputation random effect multivariable logistic regression models. ResultsIn-hospital deaths declined 6-fold from 37,537 in the Delta wave to 6,074 in the Omicron BA.1/BA.2 wave and a further 7-fold to 837 in the Omicron BA.4/BA.5 wave. The case fatality ratio (CFR) was 25.9% (N=144,798), 10.9% (N=55,966) and 7.1% (N=11,860) in the Delta, Omicron BA.1/BA.2, and Omicron BA.4/BA.5 waves respectively. After adjusting for age, sex, race, comorbidities, health sector and province, compared to the Omicron BA.4/BA.5 wave, patients had higher risk of mortality in the Omicron BA.1/BA.2 wave (adjusted odds ratio [aOR] 1.43; 95% confidence interval [CI] 1.32-1.56) and Delta (aOR 3.22; 95% CI 2.98-3.49) wave. Being partially vaccinated (aOR 0.89, CI 0.86-0.93), fully vaccinated (aOR 0.63, CI 0.60-0.66) and boosted (aOR 0.31, CI 0.24-0.41); and prior laboratory-confirmed infection (aOR 0.38, CI 0.35-0.42) were associated with reduced risks of mortality. ConclusionOverall, admission incidence risk and in-hospital mortality, which had increased progressively in South Africas first three waves, decreased in the fourth Omicron BA.1/BA.2 wave and declined even further in the fifth Omicron BA.4/BA.5 wave. Mortality risk was lower in those with natural infection and vaccination, declining further as the number of vaccine doses increased.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22274477

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) variant first emerged as the BA.1 sub-lineage, with extensive escape from neutralizing immunity elicited by previous infection with other variants, vaccines, or combinations of both1,2. Two new sub-lineages, BA.4 and BA.5, are now emerging in South Africa with changes relative to BA.1, including L452R and F486V mutations in the spike receptor binding domain. We isolated live BA.4 and BA.5 viruses and tested them against neutralizing immunity elicited to BA.1 infection in participants who were Omicron/BA.1 infected but unvaccinated (n=24) and participants vaccinated with Pfizer BNT162b2 or Johnson and Johnson Ad26.CoV.2S with breakthrough Omicron/BA.1 infection (n=15). In unvaccinated individuals, FRNT50, the inverse of the dilution for 50% neutralization, declined from 275 for BA.1 to 36 for BA.4 and 37 for BA.5, a 7.6 and 7.5-fold drop, respectively. In vaccinated BA.1 breakthroughs, FRNT50 declined from 507 for BA.1 to 158 for BA.4 (3.2-fold) and 198 for BA.5 (2.6-fold). Absolute BA.4 and BA.5 neutralization levels were about 5-fold higher in this group versus unvaccinated BA.1 infected participants. The observed escape of BA.4 and BA.5 from BA.1 elicited immunity is more moderate than of BA.1 against previous immunity1,3. However, the low absolute neutralization levels for BA.4 and BA.5, particularly in the unvaccinated group, are unlikely to protect well against symptomatic infection4.This may indicate that, based on neutralization escape, BA.4 and BA.5 have potential to result in a new infection wave.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22273711

ABSTRACT

Omicron (B.1.1.529) shows extensive escape from vaccine immunity, although vaccination reduces severe disease and death1. Boosting with vaccines incorporating variant spike sequences could possibly broaden immunity2. One approach to choose the variant may be to measure immunity elicited by vaccination combined with variant infection. Here we investigated Omicron neutralization in people infected with the Beta (B.1.351) variant and subsequently vaccinated with Pfizer BNT162b2. We observed that Beta infection alone elicited poor Omicron cross-neutralization, similar to what we previously found3 with BNT162b2 vaccination alone or in combination with ancestral or Delta virus infection. In contrast, Beta infection combined with BNT162b2 vaccination elicited neutralization with substantially lower Omicron escape.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21268475

ABSTRACT

BackgroundClinical severity of patients hospitalised with SARS-CoV-2 infection during the Omicron (fourth) wave was assessed and compared to trends in the D614G (first), Beta (second), and Delta (third) waves in South Africa. MethodsWeekly incidence of 30 laboratory-confirmed SARS-CoV-2 cases/100,000 population defined the start and end of each wave. Hospital admission data were collected through an active national COVID-19-specific surveillance programme. Disease severity was compared across waves by post-imputation random effect multivariable logistic regression models. Severe disease was defined as one or more of acute respiratory distress, supplemental oxygen, mechanical ventilation, intensive-care admission or death. Results335,219 laboratory-confirmed SARS-CoV-2 admissions were analysed, constituting 10.4% of 3,216,179 cases recorded during the 4 waves. In the Omicron wave, 8.3% of cases were admitted to hospital (52,038/629,617) compared to 12.9% (71,411/553,530) in the D614G, 12.6% (91,843/726,772) in the Beta and 10.0% (131,083/1,306,260) in the Delta waves (p<0.001). During the Omicron wave, 33.6% of admissions experienced severe disease compared to 52.3%, 63.4% and 63.0% in the D614G, Beta and Delta waves (p<0.001). The in-hospital case fatality ratio during the Omicron wave was 10.7%, compared to 21.5%, 28.8% and 26.4% in the D614G, Beta and Delta waves (p<0.001). Compared to the Omicron wave, patients had more severe clinical presentations in the D614G (adjusted odds ratio [aOR] 2.07; 95% confidence interval [CI] 2.01-2.13), Beta (aOR 3.59; CI: 3.49-3.70) and Delta (aOR 3.47: CI: 3.38-3.57) waves. ConclusionThe trend of increasing cases and admissions across South Africas first three waves shifted in Omicron fourth wave, with a higher and quicker peak but fewer admitted patients, who experienced less clinically severe illness and had a lower case-fatality ratio. Omicron marked a change in the SARS-CoV-2 epidemic curve, clinical profile and deaths in South Africa. Extrapolations to other populations should factor in differing vaccination and prior infection levels.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21267417

ABSTRACT

The emergence of SARS-CoV-2 Omicron, first identified in Botswana and South Africa, may compromise vaccine effectiveness and the ability of antibodies triggered by previous infection to protect against re-infection (1). Here we investigated whether Omicron escapes antibody neutralization in South Africans, either previously SARS-CoV-2 infected or uninfected, who were vaccinated with Pfizer BNT162b2. We also investigated if Omicron requires the ACE2 receptor to infect cells. We isolated and sequence confirmed live Omicron virus from an infected person in South Africa and compared plasma neutralization of this virus relative to an ancestral SARS-CoV-2 strain with the D614G mutation, observing that Omicron still required ACE2 to infect. For neutralization, blood samples were taken soon after vaccination, so that vaccine elicited neutralization was close to peak. Neutralization capacity of the D614G virus was much higher in infected and vaccinated versus vaccinated only participants but both groups had 22-fold Omicron escape from vaccine elicited neutralization. Previously infected and vaccinated individuals had residual neutralization predicted to confer 73% protection from symptomatic Omicron infection, while those without previous infection were predicted to retain only about 35%. Both groups were predicted to have substantial protection from severe disease. These data support the notion that high neutralization capacity elicited by a combination of infection and vaccination, and possibly boosting, could maintain reasonable effectiveness against Omicron. A waning neutralization response is likely to decrease vaccine effectiveness below these estimates. However, since protection from severe disease requires lower neutralization levels and involves T cell immunity, such protection may be maintained.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21264519

ABSTRACT

BackgroundPeople living with HIV (PLWH) have been reported to have an increased risk of more severe COVID-19 disease outcome and an increased risk of death relative to HIV-uninfected individuals. Here we assessed the ability of the Johnson and Johnson Ad26.CoV2.S vaccine to elicit neutralizing antibodies to the Delta variant in PLWH relative to HIV-uninfected individuals. We also compared the neutralization after vaccination to neutralization elicited by SARS-CoV-2 infection only in HIV-uninfected, suppressed HIV PLWH, and PLWH with detectable HIV viremia. MethodsWe enrolled 26 PLWH and 73 HIV-uninfected participants from the SISONKE phase 3b open label South African clinical trial of the Ad26.CoV2.S vaccine in health care workers (HCW). Enrollment was a median 56 days (range 19-98 days) post-vaccination and PLWH in this group had well controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. This group consisted of 34 PLWH and 28 HIV-uninfected individuals. 10 of the 34 (29%) SARS-CoV-2 infected only PLWH had detectable HIV viremia. We used records of a positive SARS-CoV-2 qPCR result, or when a positive result was absent, testing for SARS-CoV-2 nucleocapsid antibodies, to determine which vaccinated participants were SARS-CoV-2 infected prior to vaccination. Neutralization capacity was assessed using participant plasma in a live virus neutralization assay of the Delta SARS-CoV-2 variant currently dominating infections in South Africa. This study was approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal (reference BREC/00001275/2020). FindingsThe majority (68%) of Ad26.CoV2.S vaccinated HCW were found to be previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared to the infected only group (GMT=306 versus 36, p<0.0001) and 26-fold higher relative to the vaccinated only group (GMT=12, p<0.0001). No significant difference in Delta variant neutralization capacity was observed in vaccinated and previously SARS-CoV-2 infected PLWH relative to vaccinated and previously SARS-CoV-2 infected, HIV-uninfected participants (GMT=307 for HIV-uninfected, 300 for PLWH, p=0.95). SARS-CoV-2 infected, unvaccinated PLWH showed 7-fold reduced neutralization of the Delta variant relative to HIV-uninfected participants (GMT=105 for HIV-uninfected, 15 for PLWH, p=0.001). There was a higher frequency of non-responders in PLWH relative to HIV-uninfected participants in the SARS-CoV-2 infected unvaccinated group (27% versus 0%, p=0.0029) and 60% of HIV viremic versus 13% of HIV suppressed PLWH were non-responders (p=0.0088). In contrast, the frequency of non-responders was low in the vaccinated/infected group, and similar between HIV-uninfected and PLWH. Vaccinated only participants showed a low neutralization of the Delta variant, with a stronger response in PLWH (GMT=6 for HIV-uninfected, 73 for PLWH, p=0.02). InterpretationThe neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well controlled HIV was not inferior to HIV-uninfected study participants. In SARS-CoV-2 infected and non-vaccinated participants, the presence of HIV infection reduced the neutralization response to SARS-CoV-2 infection, and this effect was strongest in PLWH with detectable HIV viremia FundingSouth African Medical Research Council, The Bill & Melinda Gates Foundation.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21263564

ABSTRACT

Characterizing SARS-CoV-2 evolution in specific geographies may help predict the properties of variants coming from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from the ancestral virus in a person with advanced HIV disease. Infection was before the emergence of the Beta variant first identified in South Africa, and the Delta variant. We compared early and late evolved virus to the ancestral, Beta, Alpha, and Delta viruses and tested against convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, whereas late virus was similar to Beta, exhibiting vaccine escape and, despite pre-dating Delta, strong escape of Delta-elicited neutralization. This example is consistent with the notion that variants arising in immune-compromised hosts, including those with advanced HIV disease, may evolve immune escape of vaccines and enhanced escape of Delta immunity, with implications for vaccine breakthrough and reinfections. HighlightsO_LIA prolonged ancestral SARS-CoV-2 infection pre-dating the emergence of Beta and Delta resulted in evolution of a Beta-like serological phenotype C_LIO_LISerological phenotype includes strong escape from Delta infection elicited immunity, intermediate escape from ancestral virus immunity, and weak escape from Beta immunity C_LIO_LIEvolved virus showed substantial but incomplete escape from antibodies elicited by BNT162b2 vaccination C_LI Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=110 SRC="FIGDIR/small/21263564v2_ufig1.gif" ALT="Figure 1"> View larger version (18K): org.highwire.dtl.DTLVardef@1194bfdorg.highwire.dtl.DTLVardef@1cbe318org.highwire.dtl.DTLVardef@aa74f8org.highwire.dtl.DTLVardef@e57969_HPS_FORMAT_FIGEXP M_FIG C_FIG

9.
J Clin Microbiol ; 48(1): 281-5, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906903

ABSTRACT

HIV-Selectest is a serodiagnostic enzyme immunoassay (EIA), containing p6 and gp41 peptides, designed to differentiate between vaccine-induced antibodies and true infections. A rapid test version of the HIV-Selectest was developed. Both assays detected HIV antibodies in men and women within 2 to 4 weeks of infection, with sensitivity similar to third-generation EIAs.


Subject(s)
Antibodies, Viral/blood , HIV Infections/diagnosis , HIV Seropositivity , HIV-1/immunology , Immunoenzyme Techniques/methods , Female , Humans , Male , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...