Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 35(3): 435-445, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29037121

ABSTRACT

Biomarkers of acute human spinal cord injury (SCI) could provide a more objective measure of spinal cord damage and a better predictor of neurological outcome than current standardized neurological assessments. In SCI, there is growing interest in establishing biomarkers from cerebrospinal fluid (CSF) and from magnetic resonance imaging (MRI). Here, we compared the ability of CSF and MRI biomarkers to classify injury severity and predict neurological recovery in a cohort of acute cervical SCI patients. CSF samples and MRI scans from 36 acute cervical SCI patients were examined. From the CSF samples taken 24 h post-injury, the concentrations of inflammatory cytokines (interleukin [IL]-6, IL-8, monocyte chemotactic protein-1), and structural proteins (tau, glial fibrillary acidic protein, and S100ß) were measured. From the pre-operative MRI scans, we measured intramedullary lesion length, hematoma length, hematoma extent, CSF effacement, cord expansion, and maximal spinal cord compression. Baseline and 6-month post-injury assessments of American Spine Injury Association Impairment Scale (AIS) grade and motor score were conducted. Both MRI measures and CSF biomarker levels were found to correlate with baseline injury grade, and in combination they provided a stronger model for classifying baseline AIS grade than CSF or MRI biomarkers alone. For predicting neurological recovery, the inflammatory CSF biomarkers best predicted AIS grade conversion, whereas structural biomarker levels best predicted motor score improvement. A logistic regression model utilizing CSF biomarkers alone had a 91.2% accuracy at predicting AIS conversion, and was not strengthened by adding MRI features or even knowledge of the baseline AIS grade. In a direct comparison of MRI and CSF biomarkers, the CSF biomarkers discriminate better between different injury severities, and are stronger predictors of neurological recovery in terms of AIS grade and motor score improvement. These findings demonstrate the utility of measuring the acute biological responses to SCI as biomarkers of injury severity and neurological prognosis.


Subject(s)
Recovery of Function , Spinal Cord Injuries/cerebrospinal fluid , Spinal Cord Injuries/classification , Spinal Cord Injuries/diagnostic imaging , Adult , Biomarkers/cerebrospinal fluid , Cervical Cord/injuries , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prognosis
2.
Mol Cell Biochem ; 431(1-2): 55-65, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28285360

ABSTRACT

Exploring the function of interleukin (IL) 17 and related cytokine interactions have been proven useful toward understanding the role of inflammation in autoimmune diseases. Production of the inflammatory cytokine IL-23 by dendritic cells (DC's) has been shown to promote IL-17 expression by Th17 cells. It is well established that Th17 cells play an important role in several autoimmune diseases including psoriasis and alopecia. Our recent investigations have suggested that Kynurenine-rich environment can shift a pro-inflammatory response to an anti-inflammatory response, as is the case in the presence of the enzyme Indoleamine 2,3 dioxygenase (IDO), the rate-limiting enzyme in tryptophan degradation and Kynurenine (Kyn) production. In this study, we sought to explore the potential role of kynurenic acid (KynA), in modulating the expression of IL-23 and IL-17 by DCs and CD4+ cells, respectively. The result of flow cytometry demonstrated that the frequency of IL-23-producing DCs is reduced with 100 µg/ml of KynA as compared with that of LPS-stimulated DCs. KynA (100 µg/ml) addition to activated T cells significantly decreased the level of IL-17 mRNA and frequency of IL-17+ T cells as compared to that of concanavalin (Con) A-activated T cells. To examine the mechanism of the suppressive role of KynA on IL-23/IL-17 in these cells, cells were treated with 3 µM G-protein-coupled receptor35 (GPCR35) inhibitor (CID), for 60 min. The result showed that the reduction of both adenylate cyclase (AC) and cyclic adenosine monophosphate (cAMP) by KynA is involved in suppression of LPS-induced IL-23p19 expression. Since GPCR35 is also detected on T cells; therefore, it is concluded that KynA plays an important role in modulating the expression of IL-23 and IL-17 in DCs and Th17 cells through inhibiting GPCR35 and downregulation of both AC and cAMP.


Subject(s)
Dendritic Cells/immunology , Interleukin-17/immunology , Interleukin-23/immunology , Kynurenic Acid/pharmacology , Second Messenger Systems/drug effects , Th17 Cells/immunology , Animals , Cyclic AMP/immunology , Dendritic Cells/cytology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Male , Mice , Second Messenger Systems/immunology , Th17 Cells/cytology
3.
J Biomed Mater Res A ; 104(9): 2334-44, 2016 09.
Article in English | MEDLINE | ID: mdl-27144507

ABSTRACT

Dermal fibrosis, characterized by excessive extracellular matrix (ECM), is a pathological condition with limited effective therapeutic modalities. Lack of an antiscarring dressing further impedes the preventive measures for this condition. Here, we develop a new antiscarring dressing and investigate its potential as a slow-releasing vehicle for kynurenic acid (KynA), an antifibrotic agent. KynA was incorporated into polymethyl methacrylate (PMMA) nanofibers, containing increasing concentration of polyethylene glycol (PEG). Fibre morphology, water absorption capacity, surface hydrophilicity, in vitro drug release profile, and in vivo antifibrotic effects were investigated. Increasing concentrations of PEG (1-20%) significantly increased surface hydrophilicity, water absorption capacity, and drug release. Based on the obtained release profiles, PMMA + 10% PEG was the preferred formulation for sustained KynA release up to 120 hours. In vitro studies confirmed the preservation of KynA antifibrotic properties during electrospinning, indicated by fibroblasts proliferation suppression and ECM expression modulation. In vivo application of KynA-incorporated films significantly inhibited collagen (23.89 ± 4.79 vs. 6.99 ± 0.41, collagen-I/ß-actin mRNA expression, control vs. treated) and fibronectin expression (7.18 ± 1.09 vs. 2.31 ± 0.05, fibronectin/ß-actin mRNA expression, control vs. treated) and enhanced the production of an ECM-degrading enzyme (2.03 ± 0.88 vs. 11.88 ± 1.16 MMP-1/ß-actin mRNA expression, control vs. treated). The fabricated KynA-incorporated films can be exploited as antifibrotic wound dressings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2334-2344, 2016.


Subject(s)
Bandages , Fibroblasts/metabolism , Kynurenic Acid , Nanofibers/chemistry , Polymethyl Methacrylate/chemistry , Animals , Humans , Hydrophobic and Hydrophilic Interactions , Kynurenic Acid/chemistry , Kynurenic Acid/pharmacokinetics , Kynurenic Acid/pharmacology , Male , Rats, Long-Evans
4.
J Cell Physiol ; 231(12): 2749-60, 2016 12.
Article in English | MEDLINE | ID: mdl-26992058

ABSTRACT

Dermal fibrosis is characterized by a high deposition of extracellular matrix (ECM) and tissue cellularity. Unfortunately all means of treating this condition are unsatisfactory. We have previously reported the anti-fibrotic effects of Kynurenine (Kyn), a tryptophan metabolite, in fibrotic rabbit ear model. Here, we report the mechanism by which Kyn modulates the expression of key ECM components in dermal fibroblasts. The results showed that Kyn activates aryl hydrocarbon receptor (AHR) nuclear translocation and up-regulates cytochrome-P450 (CYP1A-1) expression, the AHR target gene. A specific AHR antagonist, 6,2',4'-trimethoxyflavone, inhibited the Kyn-dependent modulation of CYP1A-1, MMP-1, and type-I collagen expression. Establishing the anti-fibrogenic effect of Kyn and its mechanism of action, we then developed nano-fibrous Kyn slow-releasing dressings and examined their anti-fibrotic efficacy in vitro and in a rat model. Our results showed the feasibility of incorporating Kyn into PVA/PLGA nanofibers, prolonging the Kyn release up to 4 days tested. Application of medicated-dressings significantly improved the dermal fibrosis indicated by MMP-1 induction, alpha-smooth muscle actin and type-I collagen suppression, and reduced tissue cellularity, T-cells and myofibroblasts. This study clarifies the mechanism by which Kyn modulates ECM expression and reports the development of a new slow-releasing anti-fibrogenic dressing. J. Cell. Physiol. 231: 2749-2760, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Collagen Type I/metabolism , Dermis/cytology , Fibroblasts/metabolism , Kynurenine/pharmacology , Matrix Metalloproteinase 1/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Actins/metabolism , Animals , Bandages , Biocompatible Materials/pharmacology , Drug Liberation , Extracellular Matrix/metabolism , Fibroblasts/drug effects , Flavones/pharmacology , Humans , Lactic Acid/chemistry , Male , Myofibroblasts/drug effects , Myofibroblasts/pathology , Nanofibers/ultrastructure , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polyvinyl Alcohol/chemistry , Rats, Long-Evans , Wound Healing/drug effects
5.
PLoS One ; 11(1): e0146970, 2016.
Article in English | MEDLINE | ID: mdl-26765526

ABSTRACT

Type 1 diabetes (T1D) results from autoimmune destruction of insulin producing ß cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual ß cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD) mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO), into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory/regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and ß cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate ß cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes.


Subject(s)
Cell- and Tissue-Based Therapy , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Fibroblasts/metabolism , Animals , Autoimmunity/genetics , Autoimmunity/immunology , Cell Movement/genetics , Cell Movement/immunology , Cell- and Tissue-Based Therapy/methods , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Gene Expression , Hyperglycemia/genetics , Hyperglycemia/metabolism , Hyperglycemia/therapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocyte Count , Mice , Mice, Inbred NOD , Receptors, CCR7/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
6.
Immunology ; 148(1): 22-33, 2016 May.
Article in English | MEDLINE | ID: mdl-26789277

ABSTRACT

There is controversy about the immunomodulatory effect of fibroblasts on dendritic cells (DCs). To clarify this issue, in this study, we have evaluated different features of fibroblast-primed DCs including their ability to express co-inhibitory and co-stimulatory molecules, pro-inflammatory and anti-inflammatory cytokines and their ability to induce T-cell proliferation. We also examined migratory capacity of DCs to lymphatic tissues and present fibroblast-derived antigens after encountering fibroblasts. The results of our in vitro study showed that both co-inhibitory (programmed death ligand 1 and ligand 2 and B7H4) and co-stimulatory (CD86) molecules were up-regulated when DCs were co-cultured with fibroblasts. In an animal model, we showed that intra- peritoneal injection (IP) of both syngeneic and allogeneic fibroblasts significantly increased both total DC count and expression level of co-inhibitory and co-stimulatory molecules on DCs. Priming of DCs with syngeneic and allogeneic fibroblasts reduced the proliferation of CD4(+) and CD8(+) T cells. Even activation of fibroblast- primed DCs failed to restore their ability to induce T-cell proliferation. Likewise, priming of DCs with fibroblasts blocked the ability of ovalbumin-pulsed DCs to induce proliferation of ovalbumin-specific CD4(+) T cells. Compared with non-activated DCs, fibroblast-primed DCs had significantly higher expression levels of interleukin-10 and indoleamine 2, 3 dioxygenase. Fibroblast-primed DCs had a significantly reduced interleukin-12 expression level compared with that of activated DCs. After priming with fibroblasts, DCs were able to migrate to lymphatic tissues and present fibroblast-derived antigens (ovalbumin). In conclusion, after priming with fibroblasts, DCs gain tolerogenic features. This finding suggests the potential role of fibroblasts in the maintenance of immune tolerance.


Subject(s)
Dendritic Cells/immunology , Fibroblasts/physiology , Immune Tolerance , Animals , Antigen Presentation , Cells, Cultured , Coculture Techniques , Cytokines/analysis , Female , Lymphocyte Activation , Mice , Mice, Inbred C3H , Mice, Inbred C57BL
7.
Wound Repair Regen ; 23(1): 90-7, 2015.
Article in English | MEDLINE | ID: mdl-25532592

ABSTRACT

As prolongation of the inflammation phase in a healing process frequently leads to wound impairment, here we queried whether kynurenine (Kyn) could modulate this phase of wound healing. To address this, a protein microarray, quantitative polymerase chain reaction (qPCR), flow cytometry for immune cells and immune cell proliferation in the presence and absence of Kyn were conducted and compared. The result of a protein microarray revealed that the expression of 12 pro-inflammatory cytokines and chemokines was modulated in Kyn-treated mouse splenocytes as compared with those of control. These findings were then evaluated by conducting a qPCR for the gene expression of these factors and showed a significant reduction in the gene expression of majority of these cytokines and chemokines (interleukin [IL]-2, IL-17, C-X-C motif chemokine ligand [CXCL] 10, CXCL1, C-C motif ligand [CCL] 12, CXCL9, CCL4, CXCL2, and CCL5) in response to Kyn treatment. To test the anti-inflammatory effect of Kyn in an animal model, dorsal surface wounds were generated in a mouse model and wounds received daily topical application of either nothing (control), dermal cream (second control), or Kyn cream using uninjured skin tissue as another control. The wounded tissues were harvested on days 3, 6, and 10 postwounding. As anticipated, the results of fluorescence-activated cell sorting analysis revealed that upon wounding, the number of total infiltrated CD3+ cells and macrophages (CD11b+) significantly increased on day 3, peaked on day 6, and reduced on day 10 post-wounding. Interestingly, as compared with those of uninjured and dermal cream alone-treated wounds, Kyn treatment significantly reduced the number of infiltrated CD3+ cells, but not CD11b+ cells, at different time intervals examined. These findings collectively suggest that Kyn, as a small molecule, can potentially be used to overcome the difficulties associated with persistency of inflammation in healing wounds.


Subject(s)
Dermatologic Agents/pharmacology , Kynurenine/pharmacology , Macrophages/drug effects , Skin/drug effects , Wound Healing/drug effects , Animals , Cells, Cultured , Disease Models, Animal , Flow Cytometry , Inflammation , Macrophages/metabolism , Mice , Polymerase Chain Reaction , Protein Array Analysis , Skin/injuries , Skin/metabolism , Skin/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...