Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech Eng ; 143(4)2021 04 01.
Article in English | MEDLINE | ID: mdl-33156350

ABSTRACT

Finite element analysis (FEA) has been widely used to study foot biomechanics and pathological functions or effects of therapeutic solutions. However, development and analysis of such foot modeling is complex and time-consuming. The purpose of this study was therefore to propose a method coupling a FE foot model with a model order reduction (MOR) technique to provide real-time analysis of the dynamic foot function. A generic and parametric FE foot model was developed and dynamically validated during stance phase of gait. Based on a design of experiment of 30 FE simulations including four parameters related to foot function, the MOR method was employed to create a prediction model of the center of pressure (COP) path that was validated with four more random simulations. The four predicted COP paths were obtained with a 3% root-mean-square-error (RMSE) in less than 1 s. The time-dependent analysis demonstrated that the subtalar joint position and the midtarsal joint laxity are the most influential factors on the foot functions. These results provide additionally insight into the use of MOR technique to significantly improve speed and power of the FE analysis of the foot function and may support the development of real-time decision support tools based on this method.


Subject(s)
Finite Element Analysis , Foot
2.
Comput Methods Biomech Biomed Engin ; 19(14): 1578-82, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27108871

ABSTRACT

In the field of biomechanics, the offer of models which are more and more realistic requires to integrate a physiological response, in particular, the controlled muscle bracing and the reflexes. The following work aims to suggest a unique methodology which couples together a sensory and motor loop with a finite element model. Our method is applied to the study of the oscillation of the elbow in the case of a biceps brachial stretch reflex. The results obtained are promising in the purpose of the development of reactive human body models.


Subject(s)
Finite Element Analysis , Models, Biological , Reflex, Stretch/physiology , Biomechanical Phenomena , Elbow Joint/physiology , Humans , Male , Muscle, Skeletal/physiology , Numerical Analysis, Computer-Assisted , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...