Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell Rep ; 35(6): 109121, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979625

ABSTRACT

The vascular endothelial growth factor (VEGF) pathway regulates key processes in synapse function, which are disrupted in early stages of Alzheimer's disease (AD) by toxic-soluble amyloid-beta oligomers (Aßo). Here, we show that VEGF accumulates in and around Aß plaques in postmortem brains of patients with AD and in APP/PS1 mice, an AD mouse model. We uncover specific binding domains involved in direct interaction between Aßo and VEGF and reveal that this interaction jeopardizes VEGFR2 activation in neurons. Notably, we demonstrate that VEGF gain of function rescues basal synaptic transmission, long-term potentiation (LTP), and dendritic spine alterations, and blocks long-term depression (LTD) facilitation triggered by Aßo. We further decipher underlying mechanisms and find that VEGF inhibits the caspase-3-calcineurin pathway responsible for postsynaptic glutamate receptor loss due to Aßo. These findings provide evidence for alterations of the VEGF pathway in AD models and suggest that restoring VEGF action on neurons may rescue synaptic dysfunction in AD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Synapses/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Humans , Mice
2.
Cereb Cortex ; 31(6): 2980-2992, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33506269

ABSTRACT

Long-term storage of information into memory is supposed to rely on long-term synaptic plasticity processes. The detection of such synaptic changes after training in long-term/reference memory (RM) tasks has yet been scarce, variable and only studied on a short time scale. Short-term or working memory (WM) is largely known to depend on persistent neuronal activity or short-term plasticity. However, processing information into WM could also involve long-term synaptic changes that could be responsible for the erasure/forgetting of items previously stored in WM and acting as proactive interference. In order to study long-term synaptic changes associated with RM or WM, we trained chronically implanted rats in 3 different radial maze tasks: a classical RM task and 2 WM tasks involving different levels of proactive interference. Synaptic responses in the dentate gyrus were recorded during 2 × 24 h in freely moving rats after training. We found that consolidation of long-term information leads first to a delayed synaptic potentiation, occurring 9 h after RM training that is replaced by a synaptic depression once the RM rule is fully acquired. In contrast, optimal information processing into WM triggers a synaptic depression immediately after training and lasting 3 h that could act as a mechanism for interference erasure/forgetting.


Subject(s)
Dentate Gyrus/physiology , Excitatory Postsynaptic Potentials/physiology , Memory, Short-Term/physiology , Neuronal Plasticity/physiology , Psychomotor Performance/physiology , Synapses/physiology , Animals , Electrodes, Implanted , Electroencephalography/methods , Electromyography/methods , Male , Maze Learning/physiology , Rats
3.
PLoS One ; 15(1): e0228147, 2020.
Article in English | MEDLINE | ID: mdl-31945135

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0209001.].

4.
PLoS One ; 13(12): e0209001, 2018.
Article in English | MEDLINE | ID: mdl-30586445

ABSTRACT

Local field potential (LFP) recording is a very useful electrophysiological method to study brain processes. However, this method is criticized for recording low frequency activity in a large area of extracellular space potentially contaminated by distal activity. Here, we theoretically and experimentally compare ground-referenced (RR) with differential recordings (DR). We analyze electrical activity in the rat cortex with these two methods. Compared with RR, DR reveals the importance of local phasic oscillatory activities and their coherence between cortical areas. Finally, we show that DR provides a more faithful assessment of functional connectivity caused by an increase in the signal to noise ratio, and of the delay in the propagation of information between two cortical structures.


Subject(s)
Brain/physiology , Electroencephalography , Algorithms , Animals , CA1 Region, Hippocampal/physiology , Electromyography , Male , Prefrontal Cortex/physiology , Rats , Signal-To-Noise Ratio
5.
Sleep ; 41(12)2018 12 01.
Article in English | MEDLINE | ID: mdl-30285241

ABSTRACT

Study Objectives: Paradoxical sleep (PS) has been shown to play an important role in memory, in particular in emotional memory processes. However, the involvement of this particular sleep stage in the systemic consolidation of remote (30 days old) memory has never been tested. We examined whether post-learning PS could play a role in the consolidation of remote fearful memory and in the brain network reorganization that depends on it. Methods: Mice were PS-deprived during 6 hours after contextual fear conditioning using an automated method, and their memory was tested either 1 day or 30 days after learning. Brain activity during retrieval was assessed using the immediate early gene Egr1 (Zif 268) as a neuronal marker of activity. Results: We found that PS deprivation impaired the recall of remote (30 days)-but not recent (1 day)-memory. We also showed that the superficial layers of the anterior cingulate cortex were significantly less activated during the retrieval of remote memory after PS deprivation. In contrast, after such deprivation, retrieval of remote memory significantly activated several areas involved in emotional processing such as the CA1 area of the ventral hippocampus, the basolateral amygdala and the superficial layers of the ventral orbitofrontal cortex. By performing graph-theoretical analyses, our result also suggests that post-learning PS deprivation could impact the reorganization of the functional connections between limbic areas in order to reduce the level of global activity in this network. Conclusions: These findings suggest an important role for PS in the systemic consolidation of remote memory.


Subject(s)
Limbic System/physiology , Memory Consolidation/physiology , Memory, Short-Term/physiology , Mental Recall/physiology , Sleep Deprivation/physiopathology , Sleep, REM/physiology , Animals , Basolateral Nuclear Complex/physiology , Early Growth Response Protein 1/genetics , Emotions , Fear/physiology , Gyrus Cinguli/physiology , Hippocampus/physiology , Learning/physiology , Male , Mice , Mice, Inbred C57BL , Prefrontal Cortex/physiology
6.
PLoS One ; 12(3): e0173834, 2017.
Article in English | MEDLINE | ID: mdl-28288205

ABSTRACT

A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored more permanently in an intermediary form or memory between WM and long-term memory.


Subject(s)
Memory, Long-Term , Memory, Short-Term , Animals , Proactive Inhibition , Rats
7.
Learn Mem ; 24(2): 86-94, 2017 02.
Article in English | MEDLINE | ID: mdl-28096498

ABSTRACT

Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus.


Subject(s)
Adaptation, Physiological/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Hippocampus/metabolism , Learning/physiology , Memory/physiology , Receptors, AMPA/metabolism , Animals , Food Deprivation , Male , Maze Learning/physiology , Phosphorylation , Rats , Serine/metabolism , Statistics, Nonparametric
8.
Sleep ; 39(12): 2173-2188, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27748246

ABSTRACT

STUDY OBJECTIVES: It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. METHODS: We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. RESULTS: We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. CONCLUSIONS: These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM.


Subject(s)
Maze Learning/physiology , Memory, Long-Term/physiology , Memory, Short-Term/physiology , Sleep Deprivation/physiopathology , Sleep, REM/physiology , Sleep/physiology , Animals , Attention/physiology , Electroencephalography , Rats , Sleep Deprivation/psychology
9.
Cereb Cortex ; 26(4): 1488-1500, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25585510

ABSTRACT

Prolonged rapid-eye-movement (REM) sleep deprivation has long been used to study the role of REM sleep in learning and memory processes. However, this method potentially induces stress and fatigue that may directly affect cognitive functions. Here, by using a short-term and nonstressful REM sleep deprivation (RSD) method we assessed in rats the bidirectional influence of reduced and increased REM sleep amount on hippocampal-dependent emotional memory and plasticity. Our results indicate that 4 h RSD impaired consolidation of contextual fear conditioning (CFC) and induction of long-term potentiation (LTP), while decreasing density of Egr1/Zif268-expressing neurons in the CA1 region of the dorsal hippocampus. LTP and Egr1 expression were not affected in ventral CA1. Conversely, an increase in REM sleep restores and further facilitates CFC consolidation and LTP induction, and also increases Egr1 expression in dorsal CA1. Moreover, CFC consolidation, Egr1 neuron density, and LTP amplitude in dorsal CA1 show a positive correlation with REM sleep amount. Altogether, these results indicate that mild changes in REM sleep amount bidirectionally affect memory and synaptic plasticity mechanisms occurring in the CA1 area of the dorsal hippocampus.


Subject(s)
Emotions/physiology , Hippocampus/physiopathology , Long-Term Potentiation , Memory Consolidation/physiology , Sleep Deprivation/physiopathology , Sleep, REM , Animals , Conditioning, Classical/physiology , Early Growth Response Protein 1/metabolism , Fear/physiology , Hippocampus/metabolism , Male , Rats , Rats, Sprague-Dawley
10.
PLoS One ; 10(11): e0142065, 2015.
Article in English | MEDLINE | ID: mdl-26528714

ABSTRACT

How does the brain discriminate essential information aimed to be stored permanently from information required only temporarily, and that needs to be cleared away for not saturating our precious memory space? Reference Memory (RM) refers to the long-term storage of invariable information whereas Working Memory (WM) depends on the short-term storage of trial-unique information. Previous work has revealed that WM tasks are very sensitive to proactive interference. In order to prevent such interference, irrelevant old memories must be forgotten to give new ones the opportunity to be stabilized. However, unlike memory, physiological processes underlying this adaptive form of forgetting are still poorly understood. Here, we precisely ask what specific brain structure(s) could be responsible for such process to occur. To answer this question, we trained rats in a radial maze using three paradigms, a RM task and two WM tasks involving or not the processing of interference but strictly identical in terms of locomotion or motivation. We showed that an inhibition of the expression of Zif268 and c-Fos, two indirect markers of neuronal activity and synaptic plasticity, was observed in the dentate gyrus of the dorsal hippocampus when processing such interfering previously stored information. Conversely, we showed that inactivating the dentate gyrus impairs both RM and WM, but improves the processing of interference. Altogether, these results strongly suggest for the first time that the dentate gyrus could be a key structure involved in adaptive forgetting.


Subject(s)
Adaptation, Psychological/physiology , Dentate Gyrus/physiology , Memory, Short-Term/physiology , Neuronal Plasticity/physiology , Neurons/metabolism , Animals , Early Growth Response Protein 1/biosynthesis , Gene Expression Regulation/physiology , Proto-Oncogene Proteins c-fos/biosynthesis , Rats
11.
Hippocampus ; 25(11): 1361-73, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25808129

ABSTRACT

The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus.


Subject(s)
Behavior, Animal/physiology , CA1 Region, Hippocampal/physiology , Hypothalamic Hormones/physiology , Hypothalamus/cytology , Melanins/physiology , Memory, Short-Term/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Pituitary Hormones/physiology , Sleep, REM/physiology , Animals , Ataxin-3/genetics , Hypothalamic Hormones/genetics , Hypothalamus/metabolism , Melanins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pituitary Hormones/genetics
12.
Neurobiol Learn Mem ; 122: 4-10, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25448317

ABSTRACT

Memory consolidation is the process for long-term storage of information and protection against interferences. It has been proposed that long-term potentiation (LTP), the long-lasting enhancement of synaptic transmission, is a cellular model for memory consolidation. Since consolidation of several forms of memory is facilitated by paradoxical sleep (PS) we ask whether PS modulates the cellular and molecular pathways underlying LTP. The long-lasting form of LTP (L-LTP) is dependent on the activation of transcription factors, enzymatic cascades and the secreted neurotrophin BDNF. By using PS deprivation, immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR), we showed that an increase in PS amount (produced by rebound in PS deprived rats) is able to up-regulate the expression level of transcription factors Zif268 and c-Fos as well as Arc and BDNF in the CA1 and CA3 areas of the hippocampus. Several studies involved these factors in dendritic protein synthesis and in long-term structural changes of synapses underlying L-LTP. The present study together with the work of others (Ribeiro et al., 2002) suggest that by this mechanism, a post-learning increase in PS quantity (post-learning PS window) could convert a transient form of LTP to L-LTP.


Subject(s)
Arousal , Long-Term Potentiation , Memory Consolidation/physiology , Sleep, REM/physiology , Animals , Early Growth Response Protein 1/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Male , Rats, Sprague-Dawley
13.
J Neurosci ; 30(45): 15052-66, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-21068311

ABSTRACT

Vascular endothelial growth factor (VEGF) regulates angiogenesis, but also has important, yet poorly characterized roles in neuronal wiring. Using several genetic and in vitro approaches, we discovered a novel role for VEGF in the control of cerebellar granule cell (GC) migration from the external granule cell layer (EGL) toward the Purkinje cell layer (PCL). GCs express the VEGF receptor Flk1, and are chemoattracted by VEGF, whose levels are higher in the PCL than EGL. Lowering VEGF levels in mice in vivo or ectopic VEGF expression in the EGL ex vivo perturbs GC migration. Using GC-specific Flk1 knock-out mice, we provide for the first time in vivo evidence for a direct chemoattractive effect of VEGF on neurons via Flk1 signaling. Finally, using knock-in mice expressing single VEGF isoforms, we show that pericellular deposition of matrix-bound VEGF isoforms around PC dendrites is necessary for proper GC migration in vivo. These findings identify a previously unknown role for VEGF in neuronal migration.


Subject(s)
Cell Movement/physiology , Cerebellum/physiology , Neurons/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Apoptosis/physiology , Blotting, Western , Cells, Cultured , Cerebellum/cytology , Enzyme-Linked Immunosorbent Assay , Growth Cones/metabolism , HEK293 Cells , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Microscopy, Confocal , Neurons/cytology , Protein Isoforms/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
14.
J Neurophysiol ; 104(3): 1417-25, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20592115

ABSTRACT

The hypothalamic neuropeptide melanin-concentrating hormone (MCH) plays important roles in energy homeostasis, anxiety, and sleep regulation. Since the MCH receptor-1 (MCH-R1), the only functional receptor that mediates MCH functions in rodents, facilitates behavioral performance in hippocampus-dependent learning tasks, we investigated whether glutamatergic transmission in CA1 pyramidal cells could be modulated in mice lacking the MCH-R1 gene (MCH-R1(-/-)). We found that both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptor-mediated transmissions were diminished in the mutant mice compared with their controls. This deficit was explained, at least in part, by a postsynaptic down-regulation of these receptors since the amplitude of miniature excitatory postsynaptic currents and the NMDA/AMPA ratio were decreased. Long-term synaptic potentiation (LTP) was also impaired in MCH-R1(-/-) mice. This was due to an altered induction, rather than an impaired, expression because repeating the induction stimulus restored LTP to a normal magnitude. In addition, long-term synaptic depression was strongly diminished in MCH-R1(-/-) mice. These results suggest that MCH exerts a facilitatory effect on CA1 glutamatergic synaptic transmission and long-term synaptic plasticity. Recently, it has been shown that MCH neurons fire exclusively during sleep and mainly during rapid eye movement sleep. Thus these findings provide a mechanism by which sleep might facilitate memory consolidation.


Subject(s)
Glutamic Acid/physiology , Hippocampus/physiology , Neuronal Plasticity/physiology , Receptors, Somatostatin/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Somatostatin/deficiency , Time Factors
15.
Sleep ; 32(2): 227-40, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19238810

ABSTRACT

STUDY OBJECTIVES: It has been shown that wake (W) and slow wave sleep (SWS) modulate synaptic transmission in neocortical projections. However the impact of paradoxical sleep (PS) quantities on synaptic transmission remains unknown. We examined whether PS modulated the excitatory transmission and expression of glutamate receptor subtypes and phosphorylated extracellular signal-regulated kinases (p-ERK1/2). DESIGN: PS deprivation (PSD) was carried out with the multiple platforms method on adult male Sprague-Dawley rats. LTP, late-LTP, and synaptic transmission were studied in the dorsal and ventral hippocampus of controls, 75-h PSD and 150-min PS rebound (PSR). GluR1 and NR1 protein and mRNA expression were evaluated by western blot and real-time PCR. p-ERK1/2 level was quantified by western blot and immunohistochemistry. MEASUREMENT AND RESULTS: PSD decreased synaptic transmission and LTP selectively in dorsal CA1 and PSR rescued these deficits. PSD-induced synaptic modifications in CA1 were associated with a decrease in GluR1, NR1, and p-ERK1/2 levels in dorsal CA1 without change in GluR1 and NR1 mRNA expression. Regression analysis shows that LTP is positively correlated with both PS quantities and SWS episodes duration, whereas synaptic transmission and late-LTP are positively correlated with PS quantities and negatively correlated with SWS quantities. CONCLUSIONS: These findings unveil previously unrecognized roles of PSD on synaptic transmission and LTP in the dorsal, but not in the ventral, hippocampus. The fact that the decrease in protein expression of GluR1 and NR1 was not associated with a change in mRNA expression of these receptors suggests that a sleep-induced modulation of translational mechanisms occurs in dorsal CA1.


Subject(s)
Hippocampus/pathology , Long-Term Potentiation/genetics , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Sleep Deprivation/genetics , Synaptic Transmission/genetics , Animals , Enzyme Activation/genetics , Hippocampus/physiopathology , Long-Term Potentiation/physiology , Male , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Sleep Deprivation/pathology , Sleep Deprivation/physiopathology , Sleep, REM/genetics , Sleep, REM/physiology , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...