Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Cell Biol ; 24(6): 940-953, 2022 06.
Article in English | MEDLINE | ID: mdl-35654839

ABSTRACT

Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours. Single-cell transcriptomics of tumours grown in Atf4Δ/Δ mice uncovered a reduction in activation markers in perivascular cancer-associated fibroblasts (CAFs). Atf4Δ/Δ fibroblasts displayed significant defects in collagen biosynthesis and deposition and a reduced ability to support angiogenesis. Mechanistically, ATF4 regulates the expression of the Col1a1 gene and levels of glycine and proline, the major amino acids of collagen. Analyses of human melanoma and pancreatic tumours revealed a strong correlation between ATF4 and collagen levels. Our findings establish stromal ATF4 as a key driver of CAF functionality, malignant progression and metastasis.


Subject(s)
Cancer-Associated Fibroblasts , Melanoma , Pancreatic Neoplasms , Animals , Cancer-Associated Fibroblasts/metabolism , Collagen/metabolism , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Mice , Mice, Knockout , Neovascularization, Pathologic/metabolism , Pancreatic Neoplasms/pathology
2.
Blood Adv ; 6(3): 731-745, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34844262

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for a variety of hematological diseases. Allogenic HSCT requires hematopoietic stem cells (HSCs) from matched donors and comes with cytotoxicity and mortality. Recent advances in genome modification of HSCs have demonstrated the possibility of using autologous HSCT-based gene therapy to alleviate hematologic symptoms in monogenic diseases, such as the inherited bone marrow failure (BMF) syndrome Fanconi anemia (FA). However, for FA and other BMF syndromes, insufficient HSC numbers with functional defects results in delayed hematopoietic recovery and increased risk of graft failure. We and others previously identified the adaptor protein LNK (SH2B3) as a critical negative regulator of murine HSC homeostasis. However, whether LNK controls human HSCs has not been studied. Here, we demonstrate that depletion of LNK via lentiviral expression of miR30-based short hairpin RNAs results in robust expansion of transplantable human HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Importantly, LNK depletion enhances cytokine-mediated JAK/STAT activation in CD34+ hematopoietic stem and progenitor cells (HSPCs). Moreover, we demonstrate that LNK depletion expands primary HSPCs associated with FA. In xenotransplant, engraftment of FANCD2-depleted FA-like HSCs was markedly improved by LNK inhibition. Finally, targeting LNK in primary bone marrow HSPCs from FA patients enhanced their colony forming potential in vitro. Together, these results demonstrate the potential of targeting LNK to expand HSCs to improve HSCT and HSCT-based gene therapy.


Subject(s)
Fanconi Anemia , Hematopoietic Stem Cell Transplantation , Adaptor Proteins, Signal Transducing/genetics , Animals , Antigens, CD34/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/therapy , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...