Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Microbiol Spectr ; 12(1): e0250423, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38088550

ABSTRACT

IMPORTANCE: The horizontal gene transfer events are the major contributors to the current spread of CTX-M-encoding genes, the most common extended-spectrum ß-lactamase (ESBL), and many clinically crucial antimicrobial resistance (AMR) genes. This study presents evidence of the critical role of IS26 transposable element for the mobility of bla CTX-M gene among Escherichia coli isolates from children and domestic animals in the community. We suggest that the nucleotide sequences of IS26-bla CTX-M could be used to study bla CTX-M transmission between humans, domestic animals, and the environment, because understanding of the dissemination patterns of AMR genes is critical to implement effective measures to slow down the dissemination of these clinically important genes.


Subject(s)
Anti-Infective Agents , Escherichia coli Infections , Animals , Child , Humans , Escherichia coli Infections/epidemiology , Plasmids/genetics , Ecuador , Escherichia coli/genetics , Animals, Domestic/genetics , beta-Lactamases/genetics , Microbial Sensitivity Tests
2.
PLoS Med ; 20(10): e1004299, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37831716

ABSTRACT

BACKGROUND: The spread of antibiotic-resistant bacteria may be driven by human-animal-environment interactions, especially in regions with limited restrictions on antibiotic use, widespread food animal production, and free-roaming domestic animals. In this study, we aimed to identify risk factors related to commercial food animal production, small-scale or "backyard" food animal production, domestic animal ownership, and practices related to animal handling, waste disposal, and antibiotic use in Ecuadorian communities. METHODS AND FINDINGS: We conducted a repeated measures study from 2018 to 2021 in 7 semirural parishes of Quito, Ecuador to identify determinants of third-generation cephalosporin-resistant E. coli (3GCR-EC) and extended-spectrum beta-lactamase E. coli (ESBL-EC) in children. We collected 1,699 fecal samples from 600 children and 1,871 domestic animal fecal samples from 376 of the same households at up to 5 time points per household over the 3-year study period. We used multivariable log-binomial regression models to estimate relative risks (RR) of 3GCR-EC and ESBL-EC carriage, adjusting for child sex and age, caregiver education, household wealth, and recent child antibiotic use. Risk factors for 3GCR-EC included living within 5 km of more than 5 commercial food animal operations (RR: 1.26; 95% confidence interval (CI): 1.10, 1.45; p-value: 0.001), household pig ownership (RR: 1.23; 95% CI: 1.02, 1.48; p-value: 0.030) and child pet contact (RR: 1.23; 95% CI: 1.09, 1.39; p-value: 0.001). Risk factors for ESBL-EC were dog ownership (RR: 1.35; 95% CI: 1.00, 1.83; p-value: 0.053), child pet contact (RR: 1.54; 95% CI: 1.10, 2.16; p-value: 0.012), and placing animal feces on household land/crops (RR: 1.63; 95% CI: 1.09, 2.46; p-value: 0.019). The primary limitations of this study are the use of proxy and self-reported exposure measures and the use of a single beta-lactamase drug (ceftazidime with clavulanic acid) in combination disk diffusion tests for ESBL confirmation, potentially underestimating phenotypic ESBL production among cephalosporin-resistant E. coli isolates. To improve ESBL determination, it is recommended to use 2 combination disk diffusion tests (ceftazidime with clavulanic acid and cefotaxime with clavulanic acid) for ESBL confirmatory testing. Future studies should also characterize transmission pathways by assessing antibiotic resistance in commercial food animals and environmental reservoirs. CONCLUSIONS: In this study, we observed an increase in enteric colonization of antibiotic-resistant bacteria among children with exposures to domestic animals and their waste in the household environment and children living in areas with a higher density of commercial food animal production operations.


Subject(s)
Ceftazidime , Escherichia coli , Animals , Child , Dogs , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , beta-Lactamases/metabolism , Cephalosporins , Clavulanic Acid , Ecuador/epidemiology , Risk Factors , Swine , Male , Female
3.
Sci Rep ; 13(1): 14854, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684276

ABSTRACT

The coronavirus 2019 (COVID-19) pandemic has had significant impacts on health systems, population dynamics, public health awareness, and antibiotic stewardship, which could affect antibiotic resistant bacteria (ARB) emergence and transmission. In this study, we aimed to compare knowledge, attitudes, and practices (KAP) of antibiotic use and ARB carriage in Ecuadorian communities before versus after the COVID-19 pandemic began. We leveraged data collected for a repeated measures observational study of third-generation cephalosporin-resistant E. coli (3GCR-EC) carriage among children in semi-rural communities in Quito, Ecuador between July 2018 and September 2021. We included 241 households that participated in surveys and child stool sample collection in 2019, before the pandemic, and in 2021, after the pandemic began. We estimated adjusted Prevalence Ratios (aPR) and 95% Confidence Intervals (CI) using logistic and Poisson regression models. Child antibiotic use in the last 3 months declined from 17% pre-pandemic to 5% in 2021 (aPR: 0.30; 95% CI 0.15, 0.61) and 3GCR-EC carriage among children declined from 40 to 23% (aPR: 0.48; 95% CI 0.32, 0.73). Multi-drug resistance declined from 86 to 70% (aPR: 0.32; 95% CI 0.13; 0.79), the average number of antibiotic resistance genes (ARGs) per 3GCR-EC isolate declined from 9.9 to 7.8 (aPR of 0.79; 95% CI 0.65, 0.96), and the diversity of ARGs was lower in 2021. In the context of Ecuador, where COVID-19 prevention and control measures were strictly enforced after its major cities experienced some of the world's the highest mortality rates from SARS-CoV-2 infections, antibiotic use and ARB carriage declined in semi-rural communities of Quito from 2019 to 2021.


Subject(s)
COVID-19 , Escherichia coli , Child , Humans , Ecuador/epidemiology , Pandemics , Angiotensin Receptor Antagonists , Rural Population , COVID-19/epidemiology , Angiotensin-Converting Enzyme Inhibitors , SARS-CoV-2/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
4.
J Glob Antimicrob Resist ; 31: 212-215, 2022 12.
Article in English | MEDLINE | ID: mdl-36202201

ABSTRACT

OBJECTIVES: The paediatric gut microbiota is a reservoir of antimicrobial resistance genes. Environmental factors such as a child's exposure to faecal contamination and antimicrobial resistance genes of animal origin likely shape the resistome of infants and children. This study measured how different levels of exposure to domestic or food animals affect the structure of the intestinal resistome in children between 1 and 7 years of age. METHODS: One hundred nineteen faecal samples from 39 children were analysed according to the level of exposure to domestic or food animals and categorized into three risk groups. Using high-throughput sequencing with an Illumina NovaSeq 6000 SP platform, we performed faecal resistome analyses using the ResFinder database. Additionally, ResistoXplorer was used to characterize the resistomes of children differentially exposed to domestic animals. RESULTS: Our data indicated that specific antimicrobial resistance genes such as those that confer resistance to MATFPR (macrolide, aminoglycoside, tetracycline, fluoroquinolone, phenicol, and rifamycin) and tetracyclines were statistically less abundant in the group of children without exposure to animals (group 2), compared with the groups exposed to domestic and food animals (groups 1 and 3). However, the overall resistome structure among the children was not affected by the different levels of exposure to animals. CONCLUSIONS: This study suggests that animal exposure is a risk factor for young children acquiring specific antimicrobial resistance genes from domestic animals or animal production areas. However, the overall resistome structure was not affected.


Subject(s)
Anti-Infective Agents , Drug Resistance, Bacterial , Animals , Drug Resistance, Bacterial/genetics , Metagenomics , Animals, Domestic , Feces , Anti-Bacterial Agents/pharmacology
5.
PLOS Glob Public Health ; 2(3): e0000206, 2022.
Article in English | MEDLINE | ID: mdl-36962308

ABSTRACT

Extended-spectrum ß-lactamase (ESBL)-producing and other antimicrobial resistant (AR) Escherichia coli threaten human and animal health worldwide. This study examined risk factors for domestic animal colonization with ceftriaxone-resistant (CR) and ESBL-producing E. coli in semirural parishes east of Quito, Ecuador, where small-scale food animal production is common. Survey data regarding household characteristics, animal care, and antimicrobial use were collected from 304 households over three sampling cycles, and 1195 environmental animal fecal samples were assessed for E. coli presence and antimicrobial susceptibility. Multivariable regression analyses were used to assess potential risk factors for CR and ESBL-producing E. coli carriage. Overall, CR and ESBL-producing E. coli were detected in 56% and 10% of all fecal samples, respectively. The odds of CR E. coli carriage were greater among dogs at households that lived within a 5 km radius of more than 5 commercial food animal facilities (OR 1.72, 95% CI 1.15-2.58) and lower among dogs living at households that used antimicrobials for their animal(s) based on veterinary/pharmacy recommendation (OR 0.18, 95% CI 0.04-0.96). Increased odds of canine ESBL-producing E. coli carriage were associated with recent antimicrobial use in any household animal (OR 2.69, 95% CI 1.02-7.10) and purchase of antimicrobials from pet food stores (OR 6.83, 95% CI 1.32-35.35). Food animals at households that owned more than 3 species (OR 0.64, 95% CI 0.42-0.97), that used antimicrobials for growth promotion (OR 0.41, 95% CI 0.19-0.89), and that obtained antimicrobials from pet food stores (OR 0.47, 95% CI 0.25-0.89) had decreased odds of CR E. coli carriage, while food animals at households with more than 5 people (OR 2.22, 95% CI 1.23-3.99) and located within 1 km of a commercial food animal facility (OR 2.57, 95% CI 1.08-6.12) had increased odds of ESBL-producing E. coli carriage. Together, these results highlight the complexity of antimicrobial resistance among domestic animals in this setting.

6.
Am J Trop Med Hyg ; 105(3): 600-610, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34280150

ABSTRACT

Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL), a family of bacteria that includes Escherichia coli, have emerged as a global health threat. This study examined risks associated with carriage of third-generation cephalosporin-resistant (3GC-R) E. coli, including ESBL-producing, multidrug-resistant, and extensively drug-resistant (XDR) strains in children living in semirural parishes of Quito, Ecuador. We conducted a longitudinal study with two cycles of sampling (N = 374, N = 366) that included an analysis of child fecal samples and survey questions relating to water, sanitation, and hygiene, socioeconomic status, household crowding, and animal ownership. We used multivariate regression models to assess risk factors associated with a child being colonized. Across the two cycles, 18.4% (n = 516) of the 3GC-R isolates were ESBL-producing E. coli, and 40.3% (n = 516) were XDR E. coli. Children living in households that owned between 11 and 20 backyard animals had an increased odds of being colonized with XDR E. coli (odds ratio [OR] = 1.94, 95% confidence interval [CI]: 1.05-3.60) compared with those with no animals. Households that reported smelling odors from commercial poultry had increased odds of having a child positive for XDR E. coli (OR = 1.72, 95% CI: 1.11-2.66). Our results suggest that colonization of children with antimicrobial-resistant E. coli is influenced by exposure to backyard and commercial livestock and poultry. Future studies should consider community-level risk factors because child exposures to drug-resistant bacteria are likely influenced by neighborhood and regional risk factors.


Subject(s)
Community-Acquired Infections/epidemiology , Drug Resistance, Bacterial , Escherichia coli Infections/epidemiology , Agriculture , Animals , Child, Preschool , Community-Acquired Infections/microbiology , Drinking Water , Drug Resistance, Multiple, Bacterial , Ecuador/epidemiology , Educational Status , Environmental Exposure , Escherichia coli , Escherichia coli Infections/microbiology , Family Characteristics , Female , Humans , Infant , Livestock , Male , Microbial Sensitivity Tests , Social Determinants of Health , Toilet Facilities
7.
Environ Health Perspect ; 129(2): 27007, 2021 02.
Article in English | MEDLINE | ID: mdl-33617318

ABSTRACT

BACKGROUND: There is a significant gap in our understanding of the sources of multidrug-resistant bacteria and resistance genes in community settings where human-animal interfaces exist. OBJECTIVES: This study characterized the relationship of third-generation cephalosporin-resistant Escherichia coli (3GCR-EC) isolated from animal feces in the environment and child feces based on phenotypic antimicrobial resistance (AMR) and whole genome sequencing (WGS). METHODS: We examined 3GCR-EC isolated from environmental fecal samples of domestic animals and child fecal samples in Ecuador. We analyzed phenotypic and genotypic AMR, as well as clonal relationships (CRs) based on pairwise single-nucleotide polymorphisms (SNPs) analysis of 3GCR-EC core genomes. CRs were defined as isolates with fewer than 100 different SNPs. RESULTS: A total of 264 3GCR-EC isolates from children (n=21), dogs (n=20), and chickens (n=18) living in the same region of Quito, Ecuador, were identified. We detected 16 CRs total, which were found between 7 children and 5 domestic animals (5 CRs) and between 19 domestic animals (11 CRs). We observed that several clonally related 3GCR-EC isolates had acquired different plasmids and AMR genes. Most CRs were observed in different homes (n=14) at relatively large distances. Isolates from children and domestic animals shared the same blaCTX-M allelic variants, and the most prevalent were blaCTX-M-55 and blaCTX-M-65, which were found in isolates from children, dogs, and chickens. DISCUSSION: This study provides evidence of highly dynamic horizontal transfer of AMR genes and mobile genetic elements (MGEs) in the E. coli community and shows that some 3GCR-EC and (extended-spectrum ß-lactamase) ESBL genes may have moved relatively large distances among domestic animals and children in semirural communities near Quito, Ecuador. Child-animal contact and the presence of domestic animal feces in the environment potentially serve as important sources of drug-resistant bacteria and ESBL genes. https://doi.org/10.1289/EHP7729.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Animals, Domestic , Anti-Bacterial Agents , Chickens , Dogs , Ecuador/epidemiology , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , beta-Lactamases/genetics
8.
Antimicrob Resist Infect Control ; 10(1): 2, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407927

ABSTRACT

BACKGROUND: The rapid spread of extended-spectrum beta-lactamase-producing E. coli (ESBL-EC) is an urgent global health threat. We examined child caretaker knowledge, attitudes, and practices (KAP) towards proper antimicrobial agent use and whether certain KAP were associated with ESBL-EC colonization of their children. METHODS: Child caretakers living in semi-rural neighborhoods in peri-urban Quito, Ecuador were visited and surveyed about their KAP towards antibiotics. Fecal samples from one child (less than 5 years of age) per household were collected at two time points between July 2018 and May 2019 and screened for ESBL-EC. A repeated measures analysis with logistic regression was used to assess the relationship between KAP levels and child colonization with ESBL-EC. RESULTS: We analyzed 740 stool samples from 444 children living in households representing a range of environmental conditions. Of 374 children who provided fecal samples at the first household visit, 44 children were colonized with ESBL-EC (11.8%) and 161 were colonized with multidrug-resistant E. coli (43%). The prevalences of ESBL-EC and multidrug-resistant E. coli were similar at the second visit (11.2% and 41.3%, respectively; N = 366). Only 8% of caretakers knew that antibiotics killed bacteria but not viruses, and over a third reported that they "always" give their children antibiotics when the child's throat hurts (35%). Few associations were observed between KAP variables and ESBL-EC carriage among children. The odds of ESBL-EC carriage were 2.17 times greater (95% CI: 1.18-3.99) among children whose caregivers incorrectly stated that antibiotics do not kill bacteria compared to children whose caregivers correctly stated that antibiotics kill bacteria. Children from households where the caretaker answered the question "When your child's throat hurts, do you give them antibiotics?" with "sometimes" had lower odds of ESBL-EC carriage than those with a caretaker response of "never" (OR 0.48, 95% CI 0.27-0.87). CONCLUSION: Caregivers in our study population generally demonstrated low knowledge regarding appropriate use of antibiotics. Our findings suggest that misinformation about the types of infections (i.e. bacterial or viral) antibiotics should be used for may be associated with elevated odds of carriage of ESBL-EC. Understanding that using antibiotics is appropriate to treat infections some of the time may reduce the odds of ESBL-EC carriage. Overall, however, KAP measures of appropriate use of antibiotics were not strongly associated with ESBL-EC carriage. Other individual- and community-level environmental factors may overshadow the effect of KAP on ESBL-EC colonization. Intervention studies are needed to assess the true effect of improving KAP on laboratory-confirmed carriage of antimicrobial resistant bacteria, and should consider community-level studies for more effective management.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Carrier State , Escherichia coli Infections/epidemiology , Escherichia coli , Health Knowledge, Attitudes, Practice , Adult , Caregivers , Carrier State/epidemiology , Carrier State/microbiology , Child , Drug Resistance, Multiple, Bacterial , Ecuador/epidemiology , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli Infections/microbiology , Feces/microbiology , Female , Humans , Male , Prevalence , Surveys and Questionnaires , beta-Lactamases
9.
Am J Trop Med Hyg ; 102(6): 1269-1278, 2020 06.
Article in English | MEDLINE | ID: mdl-32228797

ABSTRACT

Domestic animals in the household environment have the potential to affect a child's carriage of zoonotic enteric pathogens and risk of diarrhea. This study examines the risk factors associated with pediatric diarrhea and carriage of zoonotic enteric pathogens among children living in communities where smallholder livestock production is prevalent. We conducted an observational study of children younger than 5 years that included the analysis of child (n = 306) and animal (n = 480) fecal samples for Campylobacter spp., atypical enteropathogenic Escherichia coli, Shiga toxin-producing E. coli, Salmonella spp., Yersinia spp., Cryptosporidium parvum, and Giardia lamblia. Among these seven pathogens, Giardia was the most commonly identified pathogen among children and animals in the same household, most of which was found in child-dog pairs. Campylobacter spp. was also relatively common within households, particularly among child-chicken and child-guinea pig pairs. We used multivariable Poisson regression models to assess risk factors associated with a child being positive for at least one zoonotic enteric pathogen or having diarrhea during the last week. Children who interacted with domestic animals-a behavior reported by nearly three-quarters of households owning animals-were at an increased risk of colonization with at least one zoonotic enteric pathogen (prevalence ratio [PR] = 1.56, 95% CI: 1.00-2.42). The risk of diarrhea in the last seven days was elevated but not statistically significant (PR = 2.27, CI: 0.91, 5.67). Interventions that aim to reduce pediatric exposures to enteric pathogens will likely need to be incorporated with approaches that remove animal fecal contamination from the domestic environment and encourage behavior change aimed at reducing children's contact with animal feces through diverse exposure pathways.


Subject(s)
Bacterial Infections/microbiology , Enteritis/microbiology , Enteritis/parasitology , Intestinal Diseases, Parasitic/parasitology , Animals , Animals, Domestic , Bacterial Infections/epidemiology , Child, Preschool , Data Collection , Enteritis/epidemiology , Feces/microbiology , Feces/parasitology , Female , Humans , Infant , Intestinal Diseases, Parasitic/epidemiology , Male , Zoonoses
10.
J Glob Antimicrob Resist ; 22: 63-67, 2020 09.
Article in English | MEDLINE | ID: mdl-31841712

ABSTRACT

OBJECTIVE: The aim of this study was to detect potential animal reservoirs of Escherichia coli carrying the mcr-1 gene in an Ecuadorian household. METHODS: The mobile colistin-resistance gene, mcr-1, was first detected in Ecuador in a commensal E. coli isolate from a boy. A cross-sectional study was performed to detect the possible source of colistin-resistant E. coli in the boy's household. Faecal swabs and soil faecal samples were collected from companion animals. Samples were plated on selective media to isolate colistin-resistant E. coli and isolates were submitted to PCR detection of mcr-1, pulsed field gel electrophoresis (PFGE), and multi-locus sequences typing (MLST). Moreover, the genomes of all the isolates were sequenced. RESULTS: Three different colistin-resistant E. coli sequence types (ST3941, 1630 and 2170), corresponding to three PFGE patterns, were obtained from a chicken and two dogs; these isolates were different from the human isolate (ST609). By whole-genome sequencing, the mcr-1.1 gene was found on IncI2 plasmids with very high nucleotide identity. CONCLUSIONS: Our results indicate a polyclonal dissemination of mcr-1.1 in the environment surrounding the first MCR-producing E. coli strain reported in Ecuador. Our findings support the idea of lateral dissemination of mcr-1.1 gene between unrelated E. coli isolates.


Subject(s)
Animals, Domestic/microbiology , Colistin , Escherichia coli Proteins , Animals , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Colistin/pharmacology , Cross-Sectional Studies , Dogs/microbiology , Ecuador , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing
11.
mSphere ; 4(3)2019 05 22.
Article in English | MEDLINE | ID: mdl-31118304

ABSTRACT

The increased prevalence of antimicrobial resistance (AMR) among Enterobacteriaceae has had major clinical and economic impacts on human medicine. Many of the multidrug-resistant (multiresistant) Enterobacteriaceae found in humans are community acquired, and some of them are possibly linked to food animals (i.e., livestock raised for meat and dairy products). In this study, we examined whether numerically dominant commensal Escherichia coli strains from humans (n = 63 isolates) and domestic animals (n = 174 isolates) in the same community and with matching phenotypic AMR patterns were clonally related or shared the same plasmids. We identified 25 multiresistant isolates (i.e., isolates resistant to more than one antimicrobial) that shared identical phenotypic resistance patterns. We then investigated the diversity of E. coli clones, AMR genes, and plasmids carrying the AMR genes using conjugation, replicon typing, and whole-genome sequencing. All of the multiresistant E. coli isolates (from children and domestic animals) analyzed had at least 90 or more whole-genome SNP differences between one another, suggesting that none of the strains was recently transferred. While the majority of isolates shared the same antimicrobial resistance genes and replicons, DNA sequencing indicated that these genes and replicons were found on different plasmid structures. We did not find evidence of the clonal spread of AMR in this community: instead, AMR genes were carried on diverse clones and plasmids. This presents a significant challenge for understanding the movement of AMR in a community.IMPORTANCE Even though Escherichia coli strains may share nearly identical phenotypic AMR profiles and AMR genes and overlap in space and time, the diversity of clones and plasmids challenges research that aims to identify sources of AMR. Horizontal gene transfer appears to play a more significant role than clonal expansion in the spread of AMR in this community.


Subject(s)
Animals, Domestic/microbiology , Escherichia coli Infections/veterinary , Escherichia coli/genetics , Gene Transfer, Horizontal , Genes, MDR , Symbiosis , Animals , Anti-Bacterial Agents/pharmacology , Child, Preschool , Drug Resistance, Bacterial , Ecuador , Escherichia coli/drug effects , Escherichia coli Infections/microbiology , Feces/microbiology , Humans , Infant , Microbial Sensitivity Tests , Plasmids/genetics , Rural Population , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...