Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Genet Metab ; 142(1): 108469, 2024 May.
Article in English | MEDLINE | ID: mdl-38564972

ABSTRACT

The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.


Subject(s)
Vesicular Transport Proteins , Adolescent , Child , Child, Preschool , Female , Humans , Male , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Muscular Dystrophies, Limb-Girdle/diagnosis , Mutation, Missense , Phenotype , Vesicular Transport Proteins/genetics , Case Reports as Topic
2.
Front Genet ; 13: 971473, 2022.
Article in English | MEDLINE | ID: mdl-36324500

ABSTRACT

A subgroup of congenital disorders of glycosylation (CDGs) includes inherited GPI-anchor deficiencies (IGDs) that affect the biosynthesis of glycosylphosphatidylinositol (GPI) anchors, including the first reaction catalyzed by the X-linked PIGA. Here, we show the first PIGA-CDG case reported in Mexico in a male child with a moderate-to-severe phenotype characterized by neurological and gastrointestinal symptoms, including megacolon. Exome sequencing identified the hemizygous variant PIGA c.145G>A (p.Val49Met), confirmed by Sanger sequencing and characterized as de novo. The pathogenicity of this variant was characterized by flow cytometry and complementation assays in PIGA knockout (KO) cells.

3.
Front Mol Biosci ; 8: 751637, 2021.
Article in English | MEDLINE | ID: mdl-34869586

ABSTRACT

The cardiovascular system is a complex and well-organized system in which glycosylation plays a vital role. The heart and vascular wall cells are constituted by an array of specific receptors; most of them are N- glycosylated and mucin-type O-glycosylated. There are also intracellular signaling pathways regulated by different post-translational modifications, including O-GlcNAcylation, which promote adequate responses to extracellular stimuli and signaling transduction. Herein, we provide an overview of N-glycosylation and O-glycosylation, including O-GlcNAcylation, and their role at different levels such as reception of signal, signal transduction, and exogenous molecules or agonists, which stimulate the heart and vascular wall cells with effects in different conditions, like the physiological status, ischemia/reperfusion, exercise, or during low-grade inflammation in diabetes and aging. Furthermore, mutations of glycosyltransferases and receptors are associated with development of cardiovascular diseases. The knowledge on glycosylation and its effects could be considered biochemical markers and might be useful as a therapeutic tool to control cardiovascular diseases.

4.
J Fungi (Basel) ; 7(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34829247

ABSTRACT

Sporothrixschenckii is one of the etiological agents of sporotrichosis, a worldwide-distributed subcutaneous mycosis. Its cell wall contains a glycoconjugate composed of rhamnose, mannose, glucuronic acid, and proteins, named peptidorhamnomannan, which harbors important Sporothrix-specific immunogenic epitopes. Although the peptidorhamnomannan carbohydrate moiety has been extensively studied, thus far, little is known about the protein core. Here, using LC-MS/MS, we analyzed the S.schenckii peptidorhamnomannan peptide fraction and generated mass signals of 325 proteins, most of them likely to be moonlighting proteins. Among the identified proteins, chaperonin GroEL/Hsp60 and the uncharacterized protein Pap1 were selected for further analysis. Both proteins were heterologously expressed in bacteria, and they showed adhesive properties to the extracellular matrix proteins laminin, elastin, fibrinogen, and fibronectin, although Pap1 also was bound to type-I and type-II collagen. The inoculation of concentrations higher than 40 µg of these proteins, separately, increased immune effectors in the hemolymph of Galleriamellonella larvae and protected animals from an S.schenckii lethal challenge. These observations were confirmed when yeast-like cells, pre-incubated with anti-rHsp60 or anti-rPap1 antibodies were used to inoculate larvae. The animals inoculated with pretreated cells showed increased survival rates when compared to the control groups. In conclusion, we report that Hsp60 and Pap1 are part of the cell wall peptidorhamnomannan, can bind extracellular matrix components, and contribute to the S.schenckii virulence. To our knowledge, this is the first report about moonlighting protein in the S.schenckii cell wall with an important role during the pathogen-host interaction.

6.
Front Genet ; 12: 744884, 2021.
Article in English | MEDLINE | ID: mdl-34567092

ABSTRACT

This study reports on a Mexican mestizo patient with a multi-systemic syndrome including neurological involvement and a type I serum transferrin profile. Clinical exome sequencing revealed complex alleles in ALG1, the encoding gene for the chitobiosyldiphosphodolichol beta-mannosyltransferase that participates in the formation of the dolichol-pyrophosphate-GlcNAc2Man5, a lipid-linked glycan intermediate during N-glycan synthesis. The identified complex alleles were NM_019109.5(ALG1): c.[208 + 16_208 + 19dup; 208 + 25G > T] and NM_019109.5(ALG1): c.[208 + 16_208 + 19dup; 1312C > T]. Although both alleles carried the benign variant c.208 + 16_208 + 19dup, one allele carried a known ALG1 pathogenic variant (c.1312C > T), while the other carried a new uncharacterized variant (c.208 + 25G > T) causing non-functional alternative splicing that, in conjunction with the benign variant, defines the pathogenic protein effect (p.N70S_S71ins9). The presence in the patient's serum of the pathognomonic N-linked mannose-deprived tetrasaccharide marker for ALG1-CDG (Neu5Acα2,6Galß1,4-GlcNAcß1,4GlcNAc) further supported this diagnosis. This is the first report of an ALG1-CDG patient from Latin America.

7.
Front Immunol ; 12: 823637, 2021.
Article in English | MEDLINE | ID: mdl-35222358

ABSTRACT

Polysialic acid (polySia) is a highly regulated polymer of sialic acid (Sia) with such potent biophysical characteristics that when expressed drastically influences the interaction properties of cells. Although much of what is known of polySia in mammals has been elucidated from the study of its role in the central nervous system (CNS), polySia is also expressed in other tissues, including the immune system where it presents dynamic changes during differentiation, maturation, and activation of different types of immune cells of the innate and adaptive response, being involved in key regulatory mechanisms. At least six polySia protein carriers (CCR7, ESL-1, NCAM, NRP2, ST8Sia 2, and ST8Sia 4) are expressed in different types of immune cells, but there is still much to be explored in regard not only to the regulatory mechanisms that determine their expression and the structure of polySia chains but also to the identification of the cis- and trans- ligands of polySia that establish signaling networks. This review summarizes the current knowledge on polySia in the immune system, addressing its biosynthesis, its tools for identification and structural characterization, and its functional roles and therapeutic implications.


Subject(s)
Neural Cell Adhesion Molecules , Sialyltransferases , Animals , Immune System/metabolism , Mammals/metabolism , Neural Cell Adhesion Molecules/metabolism , Sialic Acids/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism
8.
Front Microbiol ; 10: 2743, 2019.
Article in English | MEDLINE | ID: mdl-31849889

ABSTRACT

Mannans are components of the fungal wall attached to proteins via N- or O-linkages. In Candida albicans, Och1 is an α1,6-mannosyltransferase that adds the first mannose unit to the N-linked mannan outer chain; whereas Pmr1 is an ion pump that imports Mn2+ into the Golgi lumen. This cation is the cofactor of Golgi-resident mannosyltransferases, and thus Pmr1 is involved in the synthesis of both N- and O-linked mannans. Since we currently have limited information about the genetic network behind the Candida tropicalis protein mannosylation machinery, we disrupted OCH1 and PMR1 in this organism. The C. tropicalis pmr1Δ and och1Δ mutants showed increased doubling times, aberrant colony and cellular morphology, reduction in the wall mannan content, and increased susceptibility to wall perturbing agents. These changes were accompanied by increased exposure of both ß1,3-glucan and chitin at the wall surface of both mutant strains. Our results showed that O-linked mannans are dispensable for cytokine production by human mononuclear cells, but N-linked mannans and ß1,3-glucan are key ligands to trigger cytokine production in a co-stimulatory pathway involving dectin-1 and mannose receptor. Moreover, we found that the N-linked mannan core found on the surface of C. tropicalis och1Δ null mutant was capable of inducing cytokine production; and that a mannan-independent pathway for IL-10 production is present in the C. tropicalis-mononuclear cell interaction. Both mutant strains showed virulence attenuation in the Galleria mellonella and the mouse model of systemic candidiasis. Therefore, mannans are relevant for cell wall composition and organization, and for the C. tropicalis-host interaction.

9.
Glycobiology ; 29(6): 469-478, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30869134

ABSTRACT

Certain viral infections are known to modify the glycosylation profile of infected cells through the overexpression of specific host cell fucosyltransferases (FUTs). Infection with CMV (cytomegalovirus), HCV (hepatitis C virus), HSV-1 (herpes simplex virus type-1) and VZV (varicella-zoster virus) increase the expression of fucosylated epitopes, including antigens sLex (Siaα2-3 Galß1-4(Fucα1-3)GlcNAcß1-R) and Ley (Fucα1-2 Galß1-4(Fucα1-3)GlcNAcß1-R). The reorganization of the glycocalyx induced by viral infection may favor the spread of viral progeny, and alter diverse biological functions mediated by glycans, including recognition by the adaptive immune system. In this work, we aimed to establish whether infection with human adenovirus type 5 (HAd5), a well-known viral vector and infectious agent, causes changes in the glycosylation profile of A549 cells, used as a model of lung epithelium, a natural target of HAd5. We demonstrate for the first time that HAd5 infection causes a significant increase in the cell surface de novo fucosylation, as assessed by metabolic labeling, and that such modification is dependent on the expression of viral genes. The main type of increased fucosylation was determined to be in α1-2 linkage, as assessed by UEA-I lectin binding and supported by the overexpression of FUT1 and FUT2. Also, HAd5-infected cells showed a heterogeneous change in the expression profile of the bi-fucosylated Ley antigen, an antigen associated with enhanced cell proliferation and inhibition of apoptosis.


Subject(s)
Adenoviruses, Human/immunology , Adenoviruses, Human/physiology , Fucose/metabolism , Lewis Blood Group Antigens/genetics , A549 Cells , Humans , Lewis Blood Group Antigens/immunology , Lewis Blood Group Antigens/metabolism
10.
Glycoconj J ; 33(6): 897-906, 2016 12.
Article in English | MEDLINE | ID: mdl-27387429

ABSTRACT

The human Golgi Cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-Sia) transporter SLC35A1, a member of the nucleotide sugar transporter family, translocates CMP-Sia from the cytosol into the Golgi lumen where sialyltransferases use it as donor substrate for the synthesis of sialoglycoconjugates. In 2005, we reported a novel Congenital Disorder of Glycosylation (CDG) termed CDG-IIf or SLC35A1-CDG, characterized by macrothrombocytopenia, neutropenia and complete lack of the sialyl-Lex antigen (NeuAcα2-3Galß1-4(Fucα1-3)GlcNAc-R) on polymorphonuclear cells. This disease was caused by the presence of inactive SLC35A1 alleles. It was also found that the SLC35A1 generates additional isoforms through alternative splicing. In this work, we demonstrate that one of the reported isoforms, the del177 with exon 6 skipping, is able to maintain sialylation in HepG2 cells submitted to wt knockdown and restore sialylation to normal levels in the Chinese Hamester Ovary (CHO) cell line Lec2 mutant deficient in CMP-Sia transport. The characteristics of the alternatively spliced protein are discussed as well as therapeutic implications of this finding in CDGs caused by mutations in nucleotide sugar transporters (NSTs).


Subject(s)
Alternative Splicing , Congenital Disorders of Glycosylation/metabolism , Golgi Apparatus/metabolism , Nucleotide Transport Proteins/biosynthesis , Animals , CHO Cells , Congenital Disorders of Glycosylation/genetics , Cricetulus , Golgi Apparatus/genetics , Hep G2 Cells , Humans , Nucleotide Transport Proteins/genetics , Protein Isoforms/biosynthesis , Protein Isoforms/genetics
11.
Int J Mol Imaging ; 2011: 283497, 2011.
Article in English | MEDLINE | ID: mdl-21941647

ABSTRACT

In vivo assessment of tumor glucose catabolism by positron emission tomography (PET) has become a highly valued study in the medical management of cancer. Emerging technologies offer the potential to evaluate in vivo another aspect of cancer carbohydrate metabolism related to the increased anabolic use of monosaccharides like sialic acid (Sia). Sia is used for the synthesis of sialylated oligosaccharides in the cell surface that in cancer cells are overexpressed and positively associated to malignancy and worse prognosis because of their role in invasion and metastasis. This paper addresses the key points of the different strategies that have been developed to image Sia expression in vivo and the perspectives to translate it from the bench to the bedside where it would offer the clinician highly valued complementary information on cancer carbohydrate metabolism that is currently unavailable in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...