Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 164: 114927, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31401326

ABSTRACT

The production of biologically stable drinking water is challenging in conventional surface water treatment plants. However, attainment of biological stability is essential to avoid regrowth in disinfectant-free distribution systems. A novel application of ultrafiltration as a posttreatment step to enhance biological stability of drinking water produced in an existing conventional surface water treatment plant was investigated. The conventional full-scale plant comprised coagulation/sedimentation/filtration, UV-disinfection, biological activated carbon filtration and chlorine dioxide post-disinfection. The produced water exhibited substantial regrowth of Aeromonads, invertebrates and colony counts in the distribution network. Recent literature attributes this phenomenon to the specific presence of slowly biodegradable, high molecular weight (MW) biopolymeric organic compounds. Hence, the aim of this study is to enhance the biological stability of conventionally treated surface water by reducing the concentration of high-MW organic compounds. For this purpose, biological active carbon filtrate was subjected to ultrafiltration with membrane pore sizes of 10 kDa, 150 kDa and 0.12 µm respectively, operating in parallel. The UF performance was evaluated in terms of the achieved reduction in particulate and high-MW organic carbon (PHMOC); the biopolymer fraction in Liquid Chromatography-Organic Carbon Detection; biomass (cells, ATP); Assimilable Organic Carbon (AOC) by the AOC-P17/NOX method for easily biodegradable, low-MW compounds and by the AOC-A3 method for slowly biodegradable, high-MW compounds; and overall microbial growth potential (MGP) as assessed by Biomass Production Potential (BPP) and Bacterial Growth Potential (BGP) bio-assays. Results showed increasing removal of high-MW organic carbon with decreasing UF pore size, i.e., 30%, 60% and 70% removal was observed for the 0.12 µm, 150 kDa and 10 kDa membranes, respectively. Biomass and particulates retention was more than 95% for all UF membranes. AOC-A3, BPP and BGP were substantially reduced by 90%, 70% and 50%, respectively. These respective reductions were similar for all three UF membranes despite their difference in pore size. Easily biodegradable organic compounds (as AOC-P17/NOX) were not reduced by any of the membranes, which was in accordance with expectations considering the low MW of the compounds involved. Based on the obtained results, growth potential appears to be largely attributable to high-MW organic compounds which are retained by a 0.12 µm UF membrane. Furthermore, the quality of all three UF permeates was equal to or better than in reference cases (literature data) which exhibit little regrowth in their disinfectant-free distribution networks. The results demonstrate that ultrafiltration posttreatment in conventional surface water treatment plants is a potentially promising approach to enhance the biological stability of drinking water.


Subject(s)
Disinfectants , Drinking Water , Water Purification , Molecular Weight , Ultrafiltration
3.
Nature ; 569(7755): 215-221, 2019 05.
Article in English | MEDLINE | ID: mdl-31068722

ABSTRACT

Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.


Subject(s)
Geographic Mapping , Rivers , Water Movements , Animals , Conservation of Natural Resources , Ecosystem , Fishes , International Cooperation , Reproducibility of Results
4.
Water Sci Technol ; 77(11-12): 2858-2866, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30065138

ABSTRACT

The main source of potable water in high water-stress areas is commonly produced in brackish and seawater desalination plants. Owing to the presence of high concentration of suspended solids, organic matter and colloidal particles in raw water, pretreatment processes are needed for a stable operation of desalination plants. A submerged membrane ultrafiltration pilot plant has been operated as pretreatment of complex brackish surface water to study the filtration performance. The results show the membrane performance, chemical reagent requirements, water quality and cleaning procedures efficiency of an ultrafiltration pilot plant used as pretreatment for a reverse osmosis system. Alternative chemical cleaning procedures have been satisfactorily implemented, which maximize permeability recovery and allow a stable operation.


Subject(s)
Drinking Water , Water Purification/instrumentation , Water Purification/methods , Water Quality , Membranes, Artificial , Osmosis , Pilot Projects , Rivers , Seawater , Spain , Ultrafiltration/instrumentation , Ultrafiltration/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...