Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(18): 8411-8418, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37677149

ABSTRACT

Bamboo composite is an attractive candidate for structural materials in applications such as construction, the automotive industry, and logistics. However, its development has been hindered due to the use of harmful petroleum-derived synthetic adhesives or low-bonding biobased adhesives. Herein, we report a novel bioadhesion strategy based on in situ lignin bonding that can process natural bamboo into a scalable and high-performance composite. In this process, lignin bonds the cellulose fibrils into a strong network via a superstrong adhesive interface formed by hydrogen bonding and nanoscale entanglement. The resulting in situ glued-bamboo (glubam) composite exhibits a record-high shear strength of ∼4.4 MPa and a tensile strength of ∼300 MPa. This in situ lignin adhesion strategy is facile, highly scalable, and cost-effective, suggesting a promising route for fabricating strong and sustainable structural bamboo composites that sequester carbon and reduce our dependence on petrochemical-based adhesives.

2.
ACS Macro Lett ; 12(2): 288-294, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36762915

ABSTRACT

We examine whether the mode-coupling theory of Kawasaki and Ferrell (KF) [Kawasaki, K. Kinetic Equations and Time Correlation Functions of Critical Fluctuations. Ann. Phys. 1970, 61 (1), 1-56; Ferrell, R. A. Decoupled-Mode Dynamical Scaling Theory of the Binary-Liquid Phase Transition. Phys. Rev. Lett. 1970, 24 (21), 1169-1172] can describe dynamic light scattering (DLS) measurements of the dynamic structure factor of near-critical polyelectrolyte complex (PC) solutions that have been previously shown to exhibit a theoretically unanticipated lower critical solution temperature type phase behavior, i.e., phase separation upon heating, and a conventional pattern of static critical properties (low angle scattering intensity and static correlation, ξs) as a function of reduced temperature. Good qualitative accord is observed between our DLS measurements and the KF theory. In particular, we observe that the collective diffusion coefficient Dc of the PC solutions obeys the generalized Stokes-Einstein equation (GSE), Dc = kBT/6πηξs, where ξs is specified from our previous measurements and where η is measured by capillary rheometry under the same thermodynamic conditions as in our previous study of these solutions, allowing for a no-free-parameter test of the GSE. We also find that even the wavevector (q)-dependent collective diffusion coefficient Dc(q), measured by varying the scattering angle in the DLS measurements over a large range, is also well-described by the mean-field version of the KF theory. We find it remarkable that the KF theory provides such a robust description of collective diffusion in these complex charged polyelectrolyte blends under near-critical conditions given that charge fluctuations and association of the polymers might be expected to lead to physical complications that would invalidate the standard model of uncharged fluid mixtures.

3.
Biophys Rev (Melville) ; 4(1): 011303, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38505816

ABSTRACT

The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.

4.
Rheol Acta ; 61(4-5)2022.
Article in English | MEDLINE | ID: mdl-36632607

ABSTRACT

We demonstrate a capillary device used to measure the shear rate-dependent viscosity of microliter scale volumes. Liquid samples are driven pneumatically through a microcapillary and partially fill a larger glass capillary. The glass capillary is mounted on an optical linear sensor to track the air-liquid meniscus in real time and trigger the reversal of flow direction by switching a pneumatic valve. Each transit provides a volumetric flow rate measurement, which is used with the pressure drop to determine viscosity as a function of shear rate. A given sample of at least 50 µL can be measured over at least 2 to 3 decades in shear rate, in the range of 10 to 105 s-1, and be essentially fully recovered. Validation by comparison to reference measurements is performed using samples of Newtonian and non-Newtonian fluid, with viscosity ranging from 1 to 100 mPa s. The range of operation and uncertainty arising from instrumentation, meniscus effects, and inertial effects are discussed. The performance of this rheometer is advantageous, especially for use and reuse of small volumes.

5.
Soft Matter ; 18(1): 117-125, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34816867

ABSTRACT

We use a three-dimensional (3D) microvascular platform to measure the elasticity and membrane permeability of the endothelial cell layer. The microfluidic platform is connected with a pneumatic pressure controller to apply hydrostatic pressure. The deformation is measured by tracking the mean vessel diameter under varying pressures up to 300 Pa. We obtain a value for the Young's modulus of the cell layer in low strain where a linear elastic response is observed and use a hyperelastic model that describes the strain hardening observed at larger strains (pressure). A fluorescent dye is used to track the flow through the cell layer to determine the membrane flow resistance as a function of applied pressure. Finally, we track the 3D positions of cell nuclei while the vessel is pressurized to observe local deformation and correlate inter-cell deformation with the local structure of the cell layer. This approach is able to probe the mechanical properties of blood vessels in vitro and provides a methodology for investigating microvascular related diseases.


Subject(s)
Lab-On-A-Chip Devices , Microvessels , Biomechanical Phenomena , Elastic Modulus , Elasticity
6.
J Rheol (N Y N Y) ; 64(3)2020.
Article in English | MEDLINE | ID: mdl-33071392

ABSTRACT

The viscosity of a shear-banding wormlike micelle solution at high shear rates is investigated using capillary rheology and particle streak velocimetry. Measurements of the flow profile and pressure gradient show an extended entrance region, which exceeds a length to diameter ratio of 100, to reach a fully developed flow. We characterized this entrance region for capillaries with different cross-sections and use the results to select a downstream portion of the capillary where viscosity measurements can be made on fully developed flow. Measurements from this portion of the channel show a shear-thinning power-law behavior for all channel geometries from shear rates of 1000 s -1 to 120000 s -1. Varying the surfactant concentration shows two distinct power-law behaviors that depend on both shear rate and concentration and are an indication of change in micelle length.

7.
Soft Matter ; 16(27): 6285-6293, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32602520

ABSTRACT

Complex fluids containing micelles, proteins, polymers and inorganic nanoparticles are often processed and used in high shear environments that can lead to structural changes at the nanoscale. Here, capillary rheometry is combined with small-angle neutron scattering (SANS) to simultaneously measure the viscosity and nanostructure of model complex fluids at industrially-relevant high shear rates. Capillary RheoSANS (CRSANS) uses pressure-driven flow through a long, flexible, silica capillary to generate wall shear rates up to 106 s-1 and measure pressure drops up to 500 bar. Sample volumes as small as 2 mL are required, which allow for measurement of supply-limited biological and deuterated materials. The device design, rheology and scattering methodologies, and broad sample capabilities are demonstrated by measuring a variety of model systems including silica nanoparticles, NIST monoclonal antibodies, and surfactant worm-like micelles. For a shear-thinning suspension of worm-like micelles, CRSANS measurements are in good agreement with traditional RheoSANS measurements. Collectively, these techniques provide insight into relationships between nanostructure and steady-shear viscosity over eight orders of magnitude in shear rate. Overall, CRSANS expands the capabilities of traditional RheoSANS instruments toward higher shear rates, enabling in situ structural measurements of soft materials at shear rates relevant to extrusion, coating, lubrication, and spraying applications.


Subject(s)
Micelles , Nanostructures , Rheology , Scattering, Small Angle , Viscosity
8.
Soft Matter ; 16(30): 6969-6974, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32525504

ABSTRACT

Using holographic particle tracking, we report the three-dimensional flow structure organizing the viscoelastic instability in cross-channel flow. Beyond a critical Wi, the advective core flow undergoes an out-of-plane instability marked by the emergence of tertiary flow, resembling that of the toroidal vortices in Taylor-Couette geometry. The out-of-plane flow component distorts the separatrix between the impinging inflow streams, triggering symmetry breaking normal to the extension plane. As extensional rate increases, progressively higher order modes of the separatrix are observed, akin to Euler buckling of a rigid column. The disturbances propagate upstream via stress fluctuations despite viscous dissipation. These complex flow structures may be generic to elastic turbulence in mixed flows.

9.
Phys Rev Lett ; 123(19): 194501, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765176

ABSTRACT

The flow of viscoelastic fluids in channels and pipes remains poorly understood, particularly at low Reynolds numbers. Here, we investigate the flow of polymeric solutions in straight channels using pressure measurements and particle tracking. The flow friction factor f_{η} versus flow rate exhibits two regimes: a transitional regime marked by rapid increase in drag, and a turbulentlike regime characterized by a sudden decrease in drag and a weak dependence on flow rate. Lagrangian trajectories show finite transverse modulations not seen in Newtonian fluids. These curvature perturbations far downstream can generate sufficient hoop stresses to sustain the flow instabilities in the parallel shear flow.

10.
J Fluid Mech ; 8642019.
Article in English | MEDLINE | ID: mdl-31097842

ABSTRACT

The viscoelastic flow past a cylinder is a classic benchmark problem that is not completely understood. Using novel 3D holographic particle velocimetry, we report three main discoveries of the elastic instability upstream of a single cylinder in viscoelastic channel flow. First, we observe that upstream vortices initiate at the corner between the cylinder and the wall and grow with increasing flow rate. Second, beyond a critical Weissenberg, the flow upstream becomes unsteady and switches between two bistable configurations, leading to symmetry breaking in the cylinder axis direction that is highly three-dimensional in nature. Lastly, we find that the disturbance of the elastic instability propagates relatively far upstream via an elastic wave, and is weakly correlated with that in the cylinder wake. The wave speed and the extent of the instability increase with Weissenberg number, indicating an absolute instability in viscoelastic fluids.

11.
Soft Matter ; 14(44): 9020-9035, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30378623

ABSTRACT

We investigate the unstable flow of wormlike micelle solutions in pressure driven capillary flow, with a focus on the effect of entrance geometry on the fluid fluctuations. The flow is measured at different points in the capillary using particle image velocimetry while simultaneously measuring the pressure drop across the entire capillary. The fluctuations are characterized by rapid flow rate jumps that correspond with a decrease in the pressure drop followed by a longer recovery period. Velocimetry measurements in the entrance region show a transition to unstable flow above a critical flow rate, where large flow circulations are observed in the tapered geometry and localized jets are observed in an abrupt contraction. The transition to this unstable flow is shown to occur at a similar dimensionless extension rate normalized by the micelle relaxation time. A rapid breakdown in micelle alignment is observed in polarized light microscopy at the onset of the flow rate jump, indicating the importance of rapid micelle structural changes on the fluctuations. We characterize the system by analyzing the power spectral densities and develop a dynamical systems model to describe the relationship between pressure and flow rate. These developments provide understanding to control flow fluctuations and motivation for more detailed study of the coupling of fluid microstructure transitions and flow fluctuations.

12.
Phys Rev Fluids ; 2(3)2017 Mar.
Article in English | MEDLINE | ID: mdl-28691108

ABSTRACT

Non-Newtonian fluids are susceptible to flow instabilities such as shear banding, in which the fluid may exhibit a markedly discontinuous viscosity at a critical stress. Here we report the characteristics and causes of a jetting flow instability of shear banding wormlike micelle solutions in microfluidic channels with rectangular cross sections over an intermediate volumetric flow regime. Particle-tracking methods are used to measure the three-dimensional flow field in channels of differing aspect ratios, sizes, and wall materials. When jetting occurs, it is self-contained within a portion of the channel where the flow velocity is greater than the surroundings. We observe that the instability forms in channels with aspect ratio greater than 5, and that the location of the high-velocity jet appears to be sensitive to stress localizations. Jetting is not observed in a lower concentration solution without shear banding. Simulations using the Johnson-Segalman viscoelastic model show a qualitatively similar behavior to the experimental observations and indicate that compressive normal stresses in the cross-stream directions support the development of the jetting flow. Our results show that nonuniform flow of shear thinning fluids can develop across the wide dimension in rectangular microfluidic channels, with implications for microfluidic rheometry.

13.
Langmuir ; 32(34): 8565-73, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27483023

ABSTRACT

We investigate the effect of shape on reversible adsorption kinetics using colloidal polystyrene dimers near a solid glass surface as a model system. The interaction between colloid and wall is tuned using electrostatic, depletion, and gravity forces to produce a double-well potential. The dwell time in each of the potential wells is measured from long duration particle trajectories. The height of each monomer relative to the glass surface is measured to a resolution of <20 nm by in-line holographic microscopy. The measured transition probability distributions are used in kinetic equations to describe the flux of particles to and from the surface. The dimers are compared to independent isolated monomers to determine the effects of shape on adsorption equilibria and kinetics. To elucidate these differences, we consider both mass and surface coverage and two definitions of surface coverage. The results show that dimers with single coverage produce slower adsorption, lower surface coverage, and higher mass coverage in comparison to those of monomers, while dimers with double coverage adsorb faster and result in higher surface coverage.

14.
Langmuir ; 31(11): 3368-76, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25714416

ABSTRACT

Particle adsorption to an interface may be a complicated affair, motivating detailed measurements of various processes involved, to discover better understanding of the role of particle characteristics and solution conditions on adsorption coverage and rate. Here we use micron size colloids with a weak interfacial interaction potential as a model system to track particle motion and measure the rates of desorption and adsorption. The colloid-interface interaction strength is tuned to be less than 10 kBT so that it is comparable to many nanoscale systems of interest such as proteins at interfaces. The tuning is accomplished using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an light-emitting diode (LED)-based total internal reflection microscopy (TIRM) setup. The observed adsorption and desorption rates are compared to theoretical predictions based on the measured interaction potential and near-wall particle diffusivity. The results demonstrate that diffusion dynamics play a significant role when the barrier energy is small. This experimental system will allow for the future study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.

15.
Soft Matter ; 10(19): 3386-93, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24637850

ABSTRACT

The transient deformation of giant vesicles in square DC electric pulses is investigated. We experimentally observe the theoretically predicted transition from an oblate to prolate ellipsoidal shape in the case of a quasi-spherical vesicle encapsulating solution less conducting than the suspending medium. The transition is detected by utilizing a two-step pulse in order to avoid electroporation and vesicle collapse. We develop a theoretical model to describe both the deformation under an electric field and relaxation after the field is turned off. Agreement between experiment and theory demonstrates that the time-dependent vesicle shape can be used to measure membrane properties such as viscosity and capacitance.

16.
Article in English | MEDLINE | ID: mdl-24229272

ABSTRACT

We report a fluid system which exhibits chaotic dynamics under creeping flow conditions. A droplet in a uniform dc electric field deforms into an ellipsoid that can undergo irregular rotational motions. The nonlinear drop electrohydrodynamics is explained by a theoretical model which includes anisotropy in the polarization relaxation due to drop asphericity and charge convection due to rotational drop flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...