Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
4.
Cells ; 12(8)2023 04 08.
Article in English | MEDLINE | ID: mdl-37190020

ABSTRACT

Alzheimer's disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aß and pTau accumulation, improved synaptic and mitochondrial functions, and blocked neurodegeneration in symptomatic APP/PS1 mice, a translational model of AD. Here, using serial block-face scanning electron microscopy (SBFSEM) and three-dimensional (3D) EM reconstructions combined with Western blot analysis and next-generation RNA sequencing, we demonstrate that CP2 treatment also restores mitochondrial morphology and mitochondria-endoplasmic reticulum (ER) communication, reducing ER and unfolded protein response (UPR) stress in the APP/PS1 mouse brain. Using 3D EM volume reconstructions, we show that in the hippocampus of APP/PS1 mice, dendritic mitochondria primarily exist as mitochondria-on-a-string (MOAS). Compared to other morphological phenotypes, MOAS have extensive interaction with the ER membranes, forming multiple mitochondria-ER contact sites (MERCS) known to facilitate abnormal lipid and calcium homeostasis, accumulation of Aß and pTau, abnormal mitochondrial dynamics, and apoptosis. CP2 treatment reduced MOAS formation, consistent with improved energy homeostasis in the brain, with concomitant reductions in MERCS, ER/UPR stress, and improved lipid homeostasis. These data provide novel information on the MOAS-ER interaction in AD and additional support for the further development of partial MCI inhibitors as a disease-modifying strategy for AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Mice, Transgenic , Alzheimer Disease/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Hippocampus/metabolism , Lipids
5.
Adv Biol (Weinh) ; 7(10): e2200202, 2023 10.
Article in English | MEDLINE | ID: mdl-37140138

ABSTRACT

Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.


Subject(s)
Mitochondria , Mitochondrial Membranes , Mice , Animals , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Microscopy, Electron, Scanning , Cells, Cultured
6.
Kidney360 ; 3(10): 1672-1682, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36514726

ABSTRACT

Background: Mitochondrial injury occurs in and underlies acute kidney injury (AKI) caused by ischemia-reperfusion and other forms of renal injury. However, to date, a comprehensive analysis of this issue has not been undertaken in heme protein-induced AKI (HP-AKI). We examined key aspects of mitochondrial function, expression of proteins relevant to mitochondrial quality control, and mitochondrial ultrastructure in HP-AKI, along with responses to heme in renal proximal tubule epithelial cells. Methods: The long-established murine glycerol model of HP-AKI was examined at 8 and 24 hours after HP-AKI. Indices of mitochondrial function (ATP and NAD+), expression of proteins relevant to mitochondrial dynamics, mitochondrial ultrastructure, and relevant gene/protein expression in heme-exposed renal proximal tubule epithelial cells in vitro were examined. Results: ATP and NAD+ content and the NAD+/NADH ratio were all reduced in HP-AKI. Expression of relevant proteins indicate that mitochondrial biogenesis (PGC-1α, NRF1, and TFAM) and fusion (MFN2) were impaired, as was expression of key proteins involved in the integrity of outer and inner mitochondrial membranes (VDAC, Tom20, and Tim23). Conversely, marked upregulation of proteins involved in mitochondrial fission (DRP1) occurred. Ultrastructural studies, including novel 3D imaging, indicate profound changes in mitochondrial structure, including mitochondrial fragmentation, mitochondrial swelling, and misshapen mitochondrial cristae; mitophagy was also observed. Exposure of renal proximal tubule epithelial cells to heme in vitro recapitulated suppression of PGC-1α (mitochondrial biogenesis) and upregulation of p-DRP1 (mitochondrial fission). Conclusions: Modern concepts pertaining to AKI apply to HP-AKI. This study validates the investigation of novel, clinically relevant therapies such as NAD+-boosting agents and mitoprotective agents in HP-AKI.


Subject(s)
Acute Kidney Injury , Hemeproteins , Mice , Animals , Hemeproteins/metabolism , NAD/metabolism , Acute Kidney Injury/etiology , Mitochondria/metabolism , Heme/metabolism , Adenosine Triphosphate/metabolism
7.
Radiology ; 302(3): 676-683, 2022 03.
Article in English | MEDLINE | ID: mdl-34931861

ABSTRACT

Background Concerns over the neurotoxic potential of retained gadolinium in brain tissues after intravenous gadolinium-based contrast agent (GBCA) administration have led to pronounced worldwide use changes, yet the clinical sequelae of gadolinium retention remain undefined. Purpose To assess clinical and neurologic effects and potential neurotoxicity of gadolinium retention in rats after administration of various GBCAs. Materials and Methods From March 2017 through July 2018, 183 male Wistar rats received 20 intravenous injections of 2.5 mmol per kilogram of body weight (80 human equivalent doses) of various GBCAs (gadodiamide, gadobenate, gadopentetate, gadoxetate, gadobutrol, gadoterate, and gadoteridol) or saline over 4 weeks. Rats were evaluated 6 and 34 weeks after injection with five behavioral tests, and inductively coupled plasma mass spectrometry, transmission electron microscopy, and histopathology were performed on urine, serum, cerebrospinal fluid (CSF), basal ganglia, dentate nucleus, and kidney samples. Dunnett post hoc test and Wilcoxon rank sum test were used to compare differences between treatment groups. Results No evidence of differences in any behavioral test was observed between GBCA-exposed rats and control animals at either 6 or 34 weeks (P = .08 to P = .99). Gadolinium concentrations in both neuroanatomic locations were higher in linear GBCA-exposed rats than macrocyclic GBCA-exposed rats at 6 and 34 weeks (P < .001). Gadolinium clearance over time varied among GBCAs, with gadobutrol having the largest clearance (median: 62% for basal ganglia, 70% for dentate) and gadodiamide having no substantial clearance. At 34 weeks, gadolinium was largely cleared from the CSF and serum of gadodiamide-, gadobenate-, gadoterate-, and gadobutrol-exposed rats, especially for the macrocyclic agents (range: 70%-98% removal for CSF, 34%-94% removal for serum), and was nearly completely removed from urine (range: 96%-99% removal). Transmission electron microscopy was used to detect gadolinium foci in linear GBCA-exposed brain tissue, but no histopathologic differences were observed for any GBCA. Conclusion In this rat model, no clinical evidence of neurotoxicity was observed after exposure to linear and macrocyclic gadolinium-based contrast agents at supradiagnostic doses. © RSNA, 2022 Online supplemental material is available for this article.


Subject(s)
Brain/drug effects , Contrast Media/administration & dosage , Gadolinium/administration & dosage , Administration, Intravenous , Animals , Brain/metabolism , Contrast Media/metabolism , Gadolinium/metabolism , Male , Models, Animal , Rats , Rats, Wistar
8.
Cells ; 10(9)2021 08 24.
Article in English | MEDLINE | ID: mdl-34571826

ABSTRACT

Transmission electron microscopy (TEM) is widely used as an imaging modality to provide high-resolution details of subcellular components within cells and tissues. Mitochondria and endoplasmic reticulum (ER) are organelles of particular interest to those investigating metabolic disorders. A straightforward method for quantifying and characterizing particular aspects of these organelles would be a useful tool. In this protocol, we outline how to accurately assess the morphology of these important subcellular structures using open source software ImageJ, originally developed by the National Institutes of Health (NIH). Specifically, we detail how to obtain mitochondrial length, width, area, and circularity, in addition to assessing cristae morphology and measuring mito/endoplasmic reticulum (ER) interactions. These procedures provide useful tools for quantifying and characterizing key features of sub-cellular morphology, leading to accurate and reproducible measurements and visualizations of mitochondria and ER.


Subject(s)
Microscopy, Electron, Transmission/methods , Animals , Cells, Cultured , Endoplasmic Reticulum/physiology , Male , Mice, Inbred C57BL , Mitochondria/physiology , Mitochondrial Membranes/physiology , Software
9.
Oncogene ; 40(14): 2509-2523, 2021 04.
Article in English | MEDLINE | ID: mdl-33674749

ABSTRACT

Triple-negative breast cancer (TNBCs) account for 15-20% of all breast cancers and represent the most aggressive subtype of this malignancy. Early tumor relapse and progression are linked to the enrichment of a sub-fraction of cancer cells, termed breast tumor-initiating cells (BTICs), that undergo epithelial to mesenchymal transition (EMT) and typically exhibit a basal-like CD44high/CD24low and/or ALDH1high phenotype with critical cancer stem-like features such as high self-renewal capacity and intrinsic (de novo) resistance to standard of care chemotherapy. One of the major mechanisms responsible for the intrinsic drug resistance of BTICs is their high ALDH1 activity leading to inhibition of chemotherapy-induced apoptosis. In this study, we demonstrated that aurora-A kinase (AURKA) is required to mediate TGF-ß-induced expression of the SNAI1 gene, enrichment of ALDH1high BTICs, self-renewal capacity, and chemoresistance in TNBC experimental models. Significantly, the combination of docetaxel (DTX) with dual TGF-ß and AURKA pharmacologic targeting impaired tumor relapse and the emergence of distant metastasis. We also showed in unique chemoresistant TNBC cells isolated from patient-derived TNBC brain metastasis that dual TGF-ß and AURKA pharmacologic targeting reversed cancer plasticity and enhanced the sensitivity of TNBC cells to DTX-based-chemotherapy. Taken together, these findings reveal for the first time the critical role of AURKA oncogenic signaling in mediating TGF-ß-induced TNBC plasticity, chemoresistance, and tumor progression.


Subject(s)
Aurora Kinase A/metabolism , Breast Neoplasms/genetics , Cell Plasticity/genetics , Breast Neoplasms/mortality , Female , Humans , Signal Transduction , Survival Analysis
10.
Commun Biol ; 4(1): 61, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420340

ABSTRACT

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.


Subject(s)
Alzheimer Disease/drug therapy , Brain/drug effects , Cognition/drug effects , Electron Transport Complex I/antagonists & inhibitors , Pyrones/therapeutic use , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain/ultrastructure , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Mice, Inbred C57BL , Mice, Transgenic , Neuroprotection , Proof of Concept Study , Pyrones/pharmacology , Signal Transduction/drug effects
11.
Cells ; 11(1)2021 12 27.
Article in English | MEDLINE | ID: mdl-35011629

ABSTRACT

High-resolution 3D images of organelles are of paramount importance in cellular biology. Although light microscopy and transmission electron microscopy (TEM) have provided the standard for imaging cellular structures, they cannot provide 3D images. However, recent technological advances such as serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam scanning electron microscopy (FIB-SEM) provide the tools to create 3D images for the ultrastructural analysis of organelles. Here, we describe a standardized protocol using the visualization software, Amira, to quantify organelle morphologies in 3D, thereby providing accurate and reproducible measurements of these cellular substructures. We demonstrate applications of SBF-SEM and Amira to quantify mitochondria and endoplasmic reticulum (ER) structures.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Organelles/ultrastructure , Animals , Drosophila , Endoplasmic Reticulum , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/ultrastructure , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/ultrastructure
12.
Front Pharmacol ; 11: 709, 2020.
Article in English | MEDLINE | ID: mdl-32523530

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment that increasingly afflicts the elderly population. Soluble oligomers (AßOs) has been implicated in AD pathogenesis: however, the molecular events underlying a role for Aß are not well understood. We studied the effects of AßOs on mitochondrial function and on key proteins that regulate mitochondrial dynamics and biogenesis in hippocampal neurons and PC-12 cells. We find that AßOs treatment caused a reduction in total Mfn1 after a 2 h exposure (42 ± 11%); while DRP1 increased at 1 and 2 h (205 ± 22% and 198 ± 27%, respectively), correlating to changes in mitochondrial morphology. We also observed that SIRT1 levels were reduced after acute and chronic AßOs treatment (68 ± 7% and 77 ± 6%, respectively); while PGC-1α levels were reduced with the same time treatments (68 ± 8% and 67 ± 7%, respectively). Interestingly, we found that chronic treatment with AßOs increased the levels of pSIRT1 (24 h: 157 ± 18%), and we observed changes in the PGC-1α and p-SIRT1 nucleus/cytosol ratio and SIRT1-PGC-1α interaction pattern after chronic exposure to AßOs. Our data suggest that AßOs induce important changes in the level and localization of mitochondrial proteins related with the loss of mitochondrial function that are mediated by a fast and sustained SIRT1/PGC-1α complex disruption promoting a "non-return point" to an irreversible synaptic failure and neuronal network disconnection.

13.
Part Fibre Toxicol ; 16(1): 36, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31590690

ABSTRACT

BACKGROUND: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). RESULTS: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 µg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 µg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 µg/mL MWCNT-HT & ND. CONCLUSIONS: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.


Subject(s)
DNA Damage , Epithelial Cells/drug effects , Hot Temperature , Lung/drug effects , Nanotubes, Carbon/toxicity , Nitrogen/chemistry , Cell Cycle , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Epithelial Cells/pathology , Humans , Lung/pathology , Nanotubes, Carbon/chemistry , Particle Size , Surface Properties
14.
Breast Cancer Res ; 20(1): 105, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30180881

ABSTRACT

BACKGROUND: Development of distant metastases involves a complex multistep biological process termed the invasion-metastasis cascade, which includes dissemination of cancer cells from the primary tumor to secondary organs. NOTCH developmental signaling plays a critical role in promoting epithelial-to-mesenchymal transition, tumor stemness, and metastasis. Although all four NOTCH receptors show oncogenic properties, the unique role of each of these receptors in the sequential stepwise events that typify the invasion-metastasis cascade remains elusive. METHODS: We have established metastatic xenografts expressing high endogenous levels of NOTCH3 using estrogen receptor alpha-positive (ERα+) MCF-7 breast cancer cells with constitutive active Raf-1/mitogen-associated protein kinase (MAPK) signaling (vMCF-7Raf-1) and MDA-MB-231 triple-negative breast cancer (TNBC) cells. The critical role of NOTCH3 in inducing an invasive phenotype and poor outcome was corroborated in unique TNBC cells resulting from a patient-derived brain metastasis (TNBC-M25) and in publicly available claudin-low breast tumor specimens collected from participants in the Molecular Taxonomy of Breast Cancer International Consortium database. RESULTS: In this study, we identified an association between NOTCH3 expression and development of metastases in ERα+ and TNBC models. ERα+ breast tumor xenografts with a constitutive active Raf-1/MAPK signaling developed spontaneous lung metastases through the clonal expansion of cancer cells expressing a NOTCH3 reprogramming network. Abrogation of NOTCH3 expression significantly reduced the self-renewal and invasive capacity of ex vivo breast cancer cells, restoring a luminal CD44low/CD24high/ERαhigh phenotype. Forced expression of the mitotic Aurora kinase A (AURKA), which promotes breast cancer metastases, failed to restore the invasive capacity of NOTCH3-null cells, demonstrating that NOTCH3 expression is required for an invasive phenotype. Likewise, pharmacologic inhibition of NOTCH signaling also impaired TNBC cell seeding and metastatic growth. Significantly, the role of aberrant NOTCH3 expression in promoting tumor self-renewal, invasiveness, and poor outcome was corroborated in unique TNBC cells from a patient-derived brain metastasis and in publicly available claudin-low breast tumor specimens. CONCLUSIONS: These findings demonstrate the key role of NOTCH3 oncogenic signaling in the genesis of breast cancer metastasis and provide a compelling preclinical rationale for the design of novel therapeutic strategies that will selectively target NOTCH3 to halt metastatic seeding and to improve the clinical outcomes of patients with breast cancer.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Receptor, Notch3/genetics , Triple Negative Breast Neoplasms/genetics , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Self Renewal , Female , Humans , MCF-7 Cells , Mice, Nude , Middle Aged , Neoplasm Seeding , RNA Interference , Receptor, Notch3/metabolism , Survival Analysis , Transplantation, Heterologous , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
15.
Platelets ; 29(6): 574-582, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29863946

ABSTRACT

Platelet transmission electron microscopy (PTEM) is considered the gold standard test for assessing distinct ultrastructural abnormalities in inherited platelet disorders (IPDs). Nevertheless, PTEM remains mainly a research tool due to the lack of standardized procedures, a validated dense granule (DG) count reference range, and standardized image interpretation criteria. The aim of this study was to standardize and validate PTEM as a clinical laboratory test. Based on previously established methods, we optimized and standardized preanalytical, analytical, and postanalytical procedures for both whole mount (WM) and thin section (TS) PTEM. Mean number of DG/platelet (plt), percentage of plts without DG, platelet count (PC), mean platelet volume (MPV), immature platelet fraction (IPF), and plt light transmission aggregometry analyses were measured on blood samples from 113 healthy donors. Quantile regression was used to estimate the reference range for DG/plt, and linear regression was used to assess the association of DG/plt with other plt measurements. All PTEM procedures were standardized using commercially available materials and reagents. DG interpretation criteria were established based on previous publications and expert consensus, and resulted in improved operator agreement. Mean DG/plt was stable for 2 days after blood sample collection. The median within patient coefficient of variation for mean DG/plt was 22.2%; the mean DG/plt reference range (mid-95th %) was 1.2-4.0. Mean DG/plt was associated with IPF (p = .01, R2 = 0.06) but not age, sex, PC, MPV, or plt maximum aggregation or primary slope of aggregation (p > .17, R2 < 0.02). Baseline ultrastructural features were established for TS-PTEM. PTEM was validated using samples from patients with previously established diagnoses of IPDs. Standardization and validation of PTEM procedures and interpretation, and establishment of the normal mean DG/plt reference range and PTEM baseline ultrastructural features, will facilitate implementation of PTEM as a valid clinical laboratory test for evaluating ultrastructural abnormalities in IPDs.


Subject(s)
Blood Platelets/metabolism , Microscopy, Electron, Transmission/methods , Reference Values , Humans
16.
Oncol Rep ; 39(4): 1725-1730, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29393405

ABSTRACT

The discovery of human induced pluripotent stem cells (hiPSCs) is a promising advancement in the field of regenerative and personalized medicine. Expression of SOX2, KLF4, OCT4 and MYC transcription factors induces the nuclear reprogramming of somatic cells into hiPSCs that share striking similarities with human embryonic stem cells (hESCs). However, several studies have demonstrated that hESCs and hiPSCs could lead to teratoma formation in vivo, thus limiting their current clinical applications. Aberrant cell cycle regulation of hESCs is linked to centrosome amplification, which may account, for their enhanced chromosomal instability (CIN), and thus increase their tumorigenicity. Significantly, the tumor suppressor p53 plays a key role as a 'guardian of reprogramming', safeguarding genomic integrity during hiPSC reprogramming. Nevertheless, the molecular mechanisms leading to development of CIN during reprogramming and increased tumorigenic potential of hiPSCs remains to be fully elucidated. In the present study, we analyzed CIN in hiPSCs derived from keratinocytes and established that chromosomal and mitotic aberrations were linked to centrosome amplification, Aurora-A overexpression, abrogation of p53-mediated G1/S cell cycle checkpoint and loss of Rb tumor-suppressor function. When hiPSCs were transplanted into the kidney capsules of immunocompromised mice, they developed high-grade teratomas characterized by the presence of cells that exhibited non-uniform shapes and sizes, high nuclear pleomorphism and centrosome amplification. Significantly, ex vivo cells derived from teratomas exhibited high self-renewal capacity that was linked to Aurora-A kinase activity and gave rise to lung metastasis when injected into the tail vein of immunocompromised mice. Collectively, these findings demonstrated a high risk for malignancy of hiPSCs that exhibit Aurora-A overexpression, loss of Rb function, centrosome amplification and CIN. Based on these findings, we proposed that Aurora-A-targeted therapy could represent a promising prophylactic therapeutic strategy to decrease the likelihood of CIN and development of aggressive teratomas derived from hiPSCs.


Subject(s)
Aurora Kinase A/genetics , Human Embryonic Stem Cells/transplantation , Induced Pluripotent Stem Cells/transplantation , Teratoma/therapy , Animals , Carcinogenesis/genetics , Cell Differentiation/genetics , Centrosome/metabolism , Chromosomal Instability/genetics , Gene Expression Regulation, Neoplastic , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Kruppel-Like Factor 4 , Mice , Teratoma/genetics , Teratoma/pathology
17.
Biochem Biophys Res Commun ; 496(2): 746-752, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29366785

ABSTRACT

Cancer cachexia is associated with muscle weakness and atrophy. We investigated whether 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), which has previously been shown to increase skeletal myoblast oxygen consumption rate, could reverse the deleterious effects of tumor cell conditioned medium on myoblast function. Conditioned medium from Lewis lung carcinoma (LLC1) cells inhibits oxygen consumption, increases mitochondrial fragmentation, inhibits pyruvate dehydrogenase activity, and enhances proteasomal activity in human skeletal muscle myoblasts. 1α,25(OH)2D3 reverses the tumor cell-mediated changes in mitochondrial oxygen consumption and proteasomal activity, without changing pyruvate dehydrogenase activity. 1α,25(OH)2D3 might be useful in treatment of weakness seen in association with CC.


Subject(s)
Calcitriol/pharmacology , Mitochondria/drug effects , Muscle Weakness/drug therapy , Muscle Weakness/etiology , Myoblasts, Skeletal/drug effects , Neoplasms/complications , Vitamins/pharmacology , Animals , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Cell Line , Cell Line, Tumor , Humans , Mitochondria/metabolism , Mitochondria/pathology , Muscle Weakness/metabolism , Muscle Weakness/pathology , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Neoplasms/metabolism , Neoplasms/pathology , Oxygen Consumption/drug effects
18.
Oncotarget ; 8(53): 91803-91816, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29207686

ABSTRACT

Although the majority of breast cancers initially respond to the cytotoxic effects of chemotherapeutic agents, most breast cancer patients experience tumor relapse and ultimately die because of drug resistance. Breast cancer cells undergoing epithelial to mesenchymal transition (EMT) acquire a CD44+/CD24-/ALDH1+ cancer stem cell-like phenotype characterized by an increased capacity for tumor self-renewal, intrinsic drug resistance and high proclivity to develop distant metastases. We uncovered in human breast tumor xenografts a novel non-mitotic role of Aurora-A kinase in promoting breast cancer metastases through activation of EMT and expansion of breast tumor initiating cells (BTICs). In this study we characterized the role of the Aurora-A/SMAD5 oncogenic axis in the induction of chemoresistance. Breast cancer cells overexpressing Aurora-A showed resistance to conventional chemotherapeutic agents, while treatment with alisertib, a selective Aurora-A kinase inhibitor, restored chemosensitivity. Significantly, SMAD5 expression was required to induce chemoresistance and maintain a breast cancer stem cell-like phenotype, indicating that the Aurora-A/SMAD5 oncogenic axis promotes chemoresistance through activation of stemness signaling. Taken together, these findings identified a novel mechanism of drug resistance through aberrant activation of the non-canonical Aurora-A/SMAD5 oncogenic axis in breast cancer.

19.
Nat Cell Biol ; 18(4): 418-30, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26999738

ABSTRACT

Aberrant Notch signalling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly paediatric brain neoplasms. We developed animal models of CP tumours, by inducing sustained expression of Notch1, that recapitulate properties of human CP tumours with aberrant NOTCH signalling. Whole-transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate differentiation. A Shh-driven signalling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from monociliated progenitors in the roof plate characterized by elevated Notch signalling. Abnormal SHH signalling and distinct ciliogenesis are detected in human CP tumours, suggesting the SHH pathway and cilia differentiation as potential therapeutic avenues.


Subject(s)
Cell Proliferation/genetics , Choroid Plexus Neoplasms/genetics , Hedgehog Proteins/genetics , Receptor, Notch1/genetics , Animals , Blotting, Western , Choroid Plexus/metabolism , Choroid Plexus/pathology , Choroid Plexus/ultrastructure , Choroid Plexus Neoplasms/metabolism , Choroid Plexus Neoplasms/pathology , Cilia/metabolism , Cilia/ultrastructure , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/metabolism , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron, Transmission , Oligonucleotide Array Sequence Analysis , Receptor, Notch1/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Tumor Cells, Cultured , Tumor Microenvironment/genetics
20.
Sci Rep ; 6: 18725, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26729583

ABSTRACT

Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Energy Metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/pathology , Brain/ultrastructure , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/ultrastructure , Disease Models, Animal , Dynamins/metabolism , Hypoxia/metabolism , Mice, Knockout , Mice, Transgenic , Mitochondria/ultrastructure , Phenotype , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...