Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 99(6): e245-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22645098

ABSTRACT

PREMISE OF THE STUDY: Discrepancies in terms of genotyping data are frequently observed when comparing simple sequence repeat (SSR) data sets across genotyping technologies and laboratories. This technical concern introduces biases that hamper any synthetic studies or comparison of genetic diversity between collections. To prevent this for Sorghum bicolor, we developed a control kit of 48 SSR markers. METHODS AND RESULTS: One hundred seventeen markers were selected along the genome to provide coverage across the length of all 10 sorghum linkage groups. They were tested for polymorphism and reproducibility across two laboratories (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement [CIRAD], France, and International Crops Research Institute for the Semi-Arid Tropics [ICRISAT], India) using two commonly used genotyping technologies (polyacrylamide gel-based technology with LI-COR sequencing machines and capillary systems with ABI sequencing apparatus) with DNA samples from a diverse set of 48 S. bicolor accessions. CONCLUSIONS: A kit for diversity analysis (http://sat.cirad.fr/sat/sorghum_SSR_kit/) was developed. It contains information on 48 technically robust sorghum microsatellite markers and 10 DNA controls. It can further be used to calibrate sorghum SSR genotyping data acquired with different technologies and compare those to genetic diversity references.


Subject(s)
Genetic Variation , Genotyping Techniques/methods , Microsatellite Repeats/genetics , Sorghum/genetics , Alleles , DNA Primers/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Genotype , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Genetic , Sequence Analysis, DNA , Sorghum/classification , Species Specificity
2.
BMC Plant Biol ; 9: 103, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19650911

ABSTRACT

BACKGROUND: Peanut (Arachis hypogaea L.) is widely used as a food and cash crop around the world. It is considered to be an allotetraploid (2n = 4x = 40) originated from a single hybridization event between two wild diploids. The most probable hypothesis gave A. duranensis as the wild donor of the A genome and A. ipaënsis as the wild donor of the B genome. A low level of molecular polymorphism is found in cultivated germplasm and up to date few genetic linkage maps have been published. The utilization of wild germplasm in breeding programs has received little attention due to the reproductive barriers between wild and cultivated species and to the technical difficulties encountered in making large number of crosses. We report here the development of a SSR based genetic map and the analysis of genome-wide segment introgressions into the background of a cultivated variety through the utilization of a synthetic amphidiploid between A. duranensis and A. ipaënsis. RESULTS: Two hundred ninety eight (298) loci were mapped in 21 linkage groups (LGs), spanning a total map distance of 1843.7 cM with an average distance of 6.1 cM between adjacent markers. The level of polymorphism observed between the parent of the amphidiploid and the cultivated variety is consistent with A. duranensis and A. ipaënsis being the most probable donor of the A and B genomes respectively. The synteny analysis between the A and B genomes revealed an overall good collinearity of the homeologous LGs. The comparison with the diploid and tetraploid maps shed new light on the evolutionary forces that contributed to the divergence of the A and B genome species and raised the question of the classification of the B genome species. Structural modifications such as chromosomal segment inversions and a major translocation event prior to the tetraploidisation of the cultivated species were revealed. Marker assisted selection of BC1F1 and then BC2F1 lines carrying the desirable donor segment with the best possible return to the background of the cultivated variety provided a set of lines offering an optimal distribution of the wild introgressions. CONCLUSION: The genetic map developed, allowed the synteny analysis of the A and B genomes, the comparison with diploid and tetraploid maps and the analysis of the introgression segments from the wild synthetic into the background of a cultivated variety. The material we have produced in this study should facilitate the development of advanced backcross and CSSL breeding populations for the improvement of cultivated peanut.


Subject(s)
Arachis/genetics , Chromosome Mapping , Genome, Plant , Synteny , Chromosomes, Plant , DNA, Plant/genetics , Microsatellite Repeats , Phylogeny , Polymorphism, Genetic , Polyploidy , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...