Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Diagn ; 24(12): 1232-1239, 2022 12.
Article in English | MEDLINE | ID: mdl-36191840

ABSTRACT

Small in-frame insertion-deletion (indel) variants are a common form of genomic variation whose impact on rare disease phenotypes has been understudied. The prediction of the pathogenicity of such variants remains challenging. X-linked incomplete congenital stationary night blindness type 2 (CSNB2) is a nonprogressive, inherited retinal disorder caused by variants in CACNA1F, encoding the Cav1.4α1 channel protein. Here, structural analysis was used through homology modeling to interpret 10 disease-correlated and 10 putatively benign CACNA1F in-frame indel variants. CSNB2-correlated changes were found to be more highly conserved compared with putative benign variants. Notably, all 10 disease-correlated variants but none of the benign changes were within modeled regions of the protein. Structural analysis revealed that disease-correlated variants are predicted to destabilize the structure and function of the Cav1.4α1 channel protein. Overall, the use of structural information to interpret the consequences of in-frame indel variants provides an important adjunct that can improve the diagnosis for individuals with CSNB2.


Subject(s)
Eye Diseases, Hereditary , Night Blindness , Humans , Virulence , Calcium Channels, L-Type/genetics , Night Blindness/genetics , Night Blindness/metabolism , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/metabolism , Mutation
2.
Eur J Hum Genet ; 28(9): 1274-1282, 2020 09.
Article in English | MEDLINE | ID: mdl-32313206

ABSTRACT

Advances in DNA sequencing technologies have revolutionised rare disease diagnostics and have led to a dramatic increase in the volume of available genomic data. A key challenge that needs to be overcome to realise the full potential of these technologies is that of precisely predicting the effect of genetic variants on molecular and organismal phenotypes. Notably, despite recent progress, there is still a lack of robust in silico tools that accurately assign clinical significance to variants. Genetic alterations in the CACNA1F gene are the commonest cause of X-linked incomplete Congenital Stationary Night Blindness (iCSNB), a condition associated with non-progressive visual impairment. We combined genetic and homology modelling data to produce CACNA1F-vp, an in silico model that differentiates disease-implicated from benign missense CACNA1F changes. CACNA1F-vp predicts variant effects on the structure of the CACNA1F encoded protein (a calcium channel) using parameters based upon changes in amino acid properties; these include size, charge, hydrophobicity, and position. The model produces an overall score for each variant that can be used to predict its pathogenicity. CACNA1F-vp outperformed four other tools in identifying disease-implicated variants (area under receiver operating characteristic and precision recall curves = 0.84; Matthews correlation coefficient = 0.52) using a tenfold cross-validation technique. We consider this protein-specific model to be a robust stand-alone diagnostic classifier that could be replicated in other proteins and could enable precise and timely diagnosis.


Subject(s)
Genetic Testing/methods , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Structural Homology, Protein , Animals , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/genetics , Humans , Machine Learning , Mutation
3.
Genes (Basel) ; 11(2)2020 02 09.
Article in English | MEDLINE | ID: mdl-32050448

ABSTRACT

Inherited eye disorders (IED) are a heterogeneous group of Mendelian conditions that are associated with visual impairment. Although these disorders often exhibit incomplete penetrance and variable expressivity, the scale and mechanisms of these phenomena remain largely unknown. Here, we utilize publicly-available genomic and transcriptomic datasets to gain insights into variable penetrance in IED. Variants in a curated set of 340 IED-implicated genes were extracted from the Human Gene Mutation Database (HGMD) 2019.1 and cross-checked with the Genome Aggregation Database (gnomAD) 2.1 control-only dataset. Genes for which >1 variants were encountered in both HGMD and gnomAD were considered to be associated with variable penetrance (n = 56). Variability in gene expression levels was then estimated for the subset of these genes that was found to be adequately expressed in two relevant resources: the Genotype-Tissue Expression (GTEx) and Eye Genotype Expression (EyeGEx) datasets. We found that genes suspected to be associated with variable penetrance tended to have significantly more variability in gene expression levels in the general population (p = 0.0000015); this finding was consistent across tissue types. The results of this study point to the possible influence of cis and/or trans-acting elements on the expressivity of variants causing Mendelian disorders. They also highlight the potential utility of quantifying gene expression as part of the investigation of families showing evidence of variable penetrance.


Subject(s)
Eye Diseases/metabolism , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Penetrance , Retina/metabolism , Retinal Diseases/metabolism , Blood/metabolism , Brain/metabolism , Databases, Genetic , Eye Diseases/congenital , Eye Diseases/genetics , Fibroblasts/metabolism , Gene Expression , Gene Ontology , Humans , Organ Specificity , Retina/pathology , Retinal Diseases/congenital , Retinal Diseases/genetics , Skin/metabolism , Skin/radiation effects , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...