Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(9): e19531, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809458

ABSTRACT

Cooking events can generate household air pollutants that deteriorate indoor air quality (IAQ), which poses a threat to human health and well-being. In this study, the emission characteristics and emission factors (EFs) of air pollutants of different meats (beef, lamb, chicken, pork, and fish) cooked by a novel oil-free process and common with-oil processes were investigated. Oil-free cooking tends to emit lower total volatile organic compound (TVOC) levels and fewer submicron smoke particles and can reduce the intake of fat and calories. However, TVOC emissions during oil-free cooking were significantly different, and the lamb EFs were nearly 8 times higher than those during with-oil cooking. The particle-bound polycyclic aromatic hydrocarbon (Æ©PPAH) and benzo(a)pyrene-equivalent (Æ©BaPeq) EFs during with-oil cooking ranged from 76.1 to 140.5 ng/g and 7.7-12.4 ng/g, respectively, while those during oil-free cooking ranged from 41.0 to 176.6 ng/g and 5.4-47.6 ng/g, respectively. The Æ©PPAH EFs of chicken, pork, and fish were lower during oil-free cooking than during cooking with oil. Furthermore, the Æ©BaPeq EFs of beef, chicken, pork, and fish were lower during oil-free cooking than during cooking with oil. Therefore, it is recommended to use the oil-free method to cook chicken, pork, and fish to reduce Æ©PPAH and Æ©BaPeq emissions, but not recommended to cook lamb due to the increase of Æ©BaPeq emissions. The with-oil uncovered cooking EFs of aldehydes ranged from 3.77 to 22.09 µg/g, and those of oil-free cooking ranged from 4.88 to 19.96 µg/g. The aldehyde EFs were lower during oil-free covered cooking than with-oil uncovered cooking for beef, chicken, and fish. This study provides a better realizing of new cooking approaches for the reduction of cooking-induced emission, but further research on the effects of food composition (moisture and fat) and characteristics is needed.

2.
Environ Sci Pollut Res Int ; 25(25): 25390-25400, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29951756

ABSTRACT

Phytoremediation is a cost-effective and eco-friendly technique for the removal of heavy metal-contaminated soils and water. The less availability and mobility of heavy metals in medium decreased the efficiency of this technique. The mobility and availability of these metals in the medium can be enhanced by the addition of organic chelators. The present study was conducted to investigate the possibility of glutamic acid (GA) in improving silver (Ag) phytoextraction by sunflower (Helianthus annuus L.). Different concentrations of Ag and GA were supplied in solution form in different combinations after defined intervals. Results depicted that increasing concentration of Ag significantly reduced the plant biomass, photosynthetic pigments, and antioxidant enzyme activities (like catalase, peroxidase, ascorbate, peroxidase, superoxide dismutase). Furthermore, Ag stress increased the Ag concentration and the production of reactive oxygen species (ROS) in sunflower plants. The addition of GA alleviated the Ag-induced toxicity in plants and enhanced Ag concentration and accumulation in sunflower. The addition of GA enhanced Ag accumulation in sunflower roots by 70, 79, 58, and 66% at 0-, 100-, 250-, and 500-µM Ag treatments, respectively, as compared to control plants. In conclusion, the results showed that Ag significantly reduced the physiological and biochemical attributes in term of reduced growth of sunflower and the addition of GA alleviated the Ag induced toxicity and enhanced Ag uptake. The results suggested that sunflower can be used as hyper-accumulator plant for the removal of Ag under GA. Further studies are required to understand the role of GA at gene and microscopic level in plants.


Subject(s)
Glutamic Acid/pharmacology , Helianthus , Silver , Soil Pollutants , Soil/chemistry , Adaptation, Physiological/drug effects , Antioxidants/metabolism , Biodegradation, Environmental , Catalase/metabolism , Glutamic Acid/metabolism , Helianthus/drug effects , Helianthus/growth & development , Helianthus/metabolism , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Oxidative Stress/drug effects , Peroxidase/metabolism , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Silver/metabolism , Silver/toxicity , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Superoxide Dismutase/metabolism
3.
Environ Sci Pollut Res Int ; 24(26): 21050-21064, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28726228

ABSTRACT

The complex bio-geochemistry of soil allows pollutant to persist for a longer period of time which further decreased the fertility and natural composition of land. Nickel, an inorganic pollutant, coming from a wide range of industrial and manufacturing units possesses serious threat to soil degradation and crop productivity around the world. The present study was carried to evaluate the combined role of microwave irradiation (MR) and citric acid (CA) on the phytoextraction potential of Brassica napus L. under Ni stress. An initial seed germination test was conducted to select effective time scale of MR exposure. Highest seed germination was observed at exposure of 2.45 GHz frequency for 30 s. Healthy seeds of B. napus L. genotype Faisal Canola (RBN-03060) treated with MR at 2.45 GHz for 30 s were sown in plastic pots filled with 5 kg of soil. Nickel and CA applied exogenously in solution form with different combinations to both MR-treated and untreated B. napus plants. The MR-treated plants showed higher growth, biomass, photosynthetic pigments (Chl a, b, total, and carotenoids) and activities of antioxidant enzymes (SOD, POD, APX, CAT) as compared to untreated plants who showed higher reactive oxygen species (MDA, H2O2) and electrolyte leakage. Increasing Ni concentration significantly decreased the physiological and biochemical attributes of B. napus both in MR-treated and untreated plants. The addition of CA alleviated Ni-induced toxic effects in both MR-treated and untreated plants by improving antioxidant defense system. The degree of Ni stress mitigation was higher in MR-treated plants. The Ni concentration was higher in root, stem, and leaves of MR-treated plants under CA application as compared to untreated plants. The present study concluded that seeds treated with MR before sowing showed higher accumulation and concentration of Ni from soil, and this phenomenon boosted with the application of CA.


Subject(s)
Biodegradation, Environmental , Citric Acid/pharmacology , Germination , Microwaves , Nickel/metabolism , Soil Pollutants/analysis , Antioxidants/metabolism , Biomass , Brassica napus/drug effects , Brassica napus/radiation effects , Germination/drug effects , Germination/radiation effects , Hydrogen Peroxide/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism
4.
Environ Sci Pollut Res Int ; 24(21): 17669-17678, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28600794

ABSTRACT

Phytoextraction is a cost-effective and eco-friendly technique for the removal of pollutants, mainly heavy metal(loids) especially from polluted water and metal-contaminated soils. The phytoextraction of heavy metals is, in general, limited due to the low availability of heavy metals in the growth medium. Organic chelators can help to improve the phytoextraction by increasing metal mobility and solubility in the growth medium. The present research was carried out to examine the possibility of citric acid (CA) in improving chromium (Cr) phytoextraction by Lemna minor (duckweed). For this purpose, healthy plants were collected from nearby marsh and grown in hydroponics under controlled conditions. Initial metal contents of both marsh water and plant were measured along with physico-chemical properties of the marsh water. Different concentrations of Cr and CA were applied in the hydroponics in different combinations after defined intervals. Continuous aeration was supplied and pH maintained at 6.5 ± 0.1. Results showed that increasing concentration of Cr significantly decreased the plant biomass, photosynthetic pigments, leaf area, and antioxidant enzyme activities (like catalase, ascorbate peroxidase, superoxide dismutase, peroxidase). Furthermore, Cr stress increased the Cr concentrations, electrolyte leakage, hydrogen peroxide, and malondialdehyde contents in plants. The addition of CA alleviated the Cr-induced toxicity in plants and further enhanced the Cr uptake and its accumulation in L. minor. The addition of CA enhanced the Cr concentration in L. minor by 6.10, 26.5, 20.5, and 20.2% at 0, 10, 100, and 200 µM Cr treatments, respectively, compared to the respective Cr treatments without CA. Overall, the results of the present study showed that CA addition may enhance the Cr accumulation and tolerance in L. minor by enhancing the plant growth and activities of antioxidant enzymes.


Subject(s)
Araceae , Chromium/chemistry , Citric Acid , Antioxidants , Hydroponics , Plant Roots , Soil Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...