Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Commun Biol ; 6(1): 707, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563270

ABSTRACT

Soon after whales originated from small terrestrial artiodactyl ancestors, basal stem forms (archaeocetes) came to inhabit more specialized aquatic ecologies and underwent a tremendous adaptive radiation that culminated in the adoption of a fully aquatic lifestyle. This adaptive strategy is first documented by the geographically widespread extinct family Basilosauridae. Here we report a new basilosaurid genus and species, Tutcetus rayanensis, from the middle Eocene of Fayum, Egypt. This new whale is not only the smallest known basilosaurid, but it is also one of the oldest records of this family from Africa. Tutcetus allows us to further test hypotheses regarding basilosaurids' early success in the aquatic ecosystem, which lasted into the latest Eocene, and their ability to outcompete amphibious stem whales and opportunistically adapt to new niches after they completely severed their ties to the land. Tutcetus also significantly expands the size range of the basilosaurids and reveals new details about their life histories, phylogeny, and paleobiogeography.


Subject(s)
Biological Evolution , Whales , Animals , Ecosystem , Fossils , Phylogeny
2.
R Soc Open Sci ; 9(6): 220106, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35706658

ABSTRACT

Numerous non-avian theropod dinosaur fossils have been reported from the Upper Cretaceous (Cenomanian) Bahariya Formation, Bahariya Oasis, Western Desert of Egypt, but unambiguous materials of Abelisauridae have yet to be documented. Here we report Mansoura University Vertebrate Paleontology Center (MUVP) specimen 477, an isolated, well-preserved tenth cervical vertebra of a medium-sized abelisaurid from the Bahariya Formation. The new vertebra shows affinities with those of other Upper Cretaceous abelisaurids from Madagascar and South America, such as Majungasaurus crenatissimus, Carnotaurus sastrei, Viavenator exxoni and a generically indeterminate Patagonian specimen (Museo Padre Molina specimen 99). Phylogenetic analysis recovers the Bahariya form within Abelisauridae, either in a polytomy of all included abelisaurids (strict consensus tree) or as an early branching member of the otherwise South American clade Brachyrostra (50% majority rule consensus tree). MUVP 477, therefore, represents the first confirmed abelisaurid fossil from the Bahariya Formation and the oldest definitive record of the clade from Egypt and northeastern Africa more generally. The new vertebra demonstrates the wide geographical distribution of Abelisauridae across North Africa during the middle Cretaceous and augments the already extraordinarily diverse large-bodied theropod assemblage of the Bahariya Formation, a record that also includes representatives of Spinosauridae, Carcharodontosauridae and Bahariasauridae.

3.
PeerJ ; 9: e12074, 2021.
Article in English | MEDLINE | ID: mdl-34721955

ABSTRACT

BACKGROUND: The rich rodent assemblages from the Eocene-Oligocene deposits of the Jebel Qatrani Formation (Fayum Depression, Egypt) have important implications for our understanding of the origin and paleobiogeography of Hystricognathi, a diverse clade that is now represented by the Afro-Asiatic Hystricidae, New World Caviomorpha, and African Phiomorpha. METHODS: Here we present previously undescribed material of the enigmatic hystricognath clade Phiocricetomyinae, from two stratigraphic levels in the lower sequence of the Jebel Qatrani Formation-a new genus and species (Qatranimys safroutus) from the latest Eocene Locality 41 (~34 Ma, the oldest and most productive quarry in the formation) and additional material of Talahphiomys lavocati from that species' type locality, early Oligocene Quarry E (~31-33.2 Ma). RESULTS: The multiple specimens of Qatranimys safroutus from L-41 document almost the entire lower and upper dentition, as well as mandibular fragments and the first cranial remains known for a derived phiocricetomyine. Specimens from Quarry E allow us to expand comparisons with specimens from Libya (late Eocene of Dur at-Talah and early Oligocene of Zallah Oasis) that have been placed in T. lavocati, and we show that the Dur at-Talah and Zallah specimens do not pertain to this species. These observations leave the Fayum Quarry E as the only locality where T. lavocati occurs.

4.
Commun Biol ; 4(1): 1172, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34621013

ABSTRACT

Diverse lines of geological and geochemical evidence indicate that the Eocene-Oligocene transition (EOT) marked the onset of a global cooling phase, rapid growth of the Antarctic ice sheet, and a worldwide drop in sea level. Paleontologists have established that shifts in mammalian community structure in Europe and Asia were broadly coincident with these events, but the potential impact of early Oligocene climate change on the mammalian communities of Afro-Arabia has long been unclear. Here we employ dated phylogenies of multiple endemic Afro-Arabian mammal clades (anomaluroid and hystricognath rodents, anthropoid and strepsirrhine primates, and carnivorous hyaenodonts) to investigate lineage diversification and loss since the early Eocene. These analyses provide evidence for widespread mammalian extinction in the early Oligocene of Afro-Arabia, with almost two-thirds of peak late Eocene diversity lost in these clades by ~30 Ma. Using homology-free dental topographic metrics, we further demonstrate that the loss of Afro-Arabian rodent and primate lineages was associated with a major reduction in molar occlusal topographic disparity, suggesting a correlated loss of dietary diversity. These results raise new questions about the relative importance of global versus local influences in shaping the evolutionary trajectories of Afro-Arabia's endemic mammals during the Oligocene.


Subject(s)
Biological Evolution , Climate Change , Diet , Extinction, Biological , Mammals/physiology , Africa , Animals , Arabia , Fossils , Paleontology
5.
Proc Biol Sci ; 288(1957): 20211368, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34428967

ABSTRACT

Over about 10 million years, the ancestors of whales transformed from herbivorous, deer-like, terrestrial mammals into carnivorous and fully aquatic cetaceans. Protocetids are Eocene whales that represent a unique semiaquatic stage in that dramatic evolutionary transformation. Here, we report on a new medium-sized protocetid, Phiomicetus anubis gen. et sp. nov., consisting of a partial skeleton from the middle Eocene (Lutetian) of the Fayum Depression in Egypt. The new species differs from other protocetids in having large, elongated temporal fossae, anteriorly placed pterygoids, elongated parietals, an unfused mandibular symphysis that terminates at the level of P3, and a relatively enlarged I3. Unique features of the skull and mandible suggest a capacity for more efficient oral mechanical processing than the typical protocetid condition, thereby allowing for a strong raptorial feeding style. Phylogenetic analysis nests Phiomicetus within the paraphyletic Protocetidae, as the most basal protocetid known from Africa. Recovery of Phiomicetus from the same bed that yielded the remingtonocetid Rayanistes afer provides the first clear evidence for the co-occurrence of the basal cetacean families Remingtonocetidae and Protocetidae in Africa. The discovery of Phiomicetus further augments our understanding of the biogeography and feeding ecology of early whales.


Subject(s)
Deer , Whales , Animals , Biological Evolution , Fossils , Phylogeny , Skull/anatomy & histology
6.
Nat Commun ; 10(1): 4778, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31699998

ABSTRACT

The divergence of crown catarrhines-i.e., the split of cercopithecoids (Old World monkeys) from hominoids (apes and humans)-is a poorly understood phase in our shared evolutionary history with other primates. The two groups differ in the anatomy of the hip joint, a pattern that has been linked to their locomotor strategies: relatively restricted motion in cercopithecoids vs. more eclectic movements in hominoids. Here we take advantage of the first well-preserved proximal femur of the early Oligocene stem catarrhine Aegyptopithecus to investigate the evolution of this anatomical region using 3D morphometric and phylogenetically-informed evolutionary analyses. Our analyses reveal that cercopithecoids and hominoids have undergone divergent evolutionary transformations of the proximal femur from a similar ancestral morphology that is not seen in any living anthropoid, but is preserved in Aegyptopithecus, stem platyrrhines, and stem cercopithecoids. These results highlight the relevance of fossil evidence for illuminating key adaptive shifts in primate evolution.


Subject(s)
Hindlimb , Animals , Biological Evolution , Cercopithecidae , Fossils , Hominidae , Humans , Phylogeny
7.
Nat Commun ; 9(1): 3193, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30131571

ABSTRACT

In 1967 G.G. Simpson described three partial mandibles from early Miocene deposits in Kenya that he interpreted as belonging to a new strepsirrhine primate, Propotto. This interpretation was quickly challenged, with the assertion that Propotto was not a primate, but rather a pteropodid fruit bat. The latter interpretation has not been questioned for almost half a century. Here we re-evaluate the affinities of Propotto, drawing upon diverse lines of evidence to establish that this strange mammal is a strepsirrhine primate as originally suggested by Simpson. Moreover, our phylogenetic analyses support the recognition of Propotto, together with late Eocene Plesiopithecus from Egypt, as African stem chiromyiform lemurs that are exclusively related to the extant aye-aye (Daubentonia) from Madagascar. Our results challenge the long-held view that all lemurs are descended from a single ancient colonization of Madagascar, and present an intriguing alternative scenario in which two lemur lineages dispersed from Africa to Madagascar independently, possibly during the later Cenozoic.


Subject(s)
Biological Evolution , Fossils , Lemur/physiology , Primates/physiology , Animals , Egypt , Extinction, Biological , Kenya , Madagascar , Molar/anatomy & histology , Phylogeny , Phylogeography , Principal Component Analysis
8.
Nat Ecol Evol ; 2(3): 445-451, 2018 03.
Article in English | MEDLINE | ID: mdl-29379183

ABSTRACT

Prominent hypotheses advanced over the past two decades have sought to characterize the Late Cretaceous continental vertebrate palaeobiogeography of Gondwanan landmasses, but have proved difficult to test because terrestrial vertebrates from the final ~30 million years of the Mesozoic are extremely rare and fragmentary on continental Africa (including the then-conjoined Arabian Peninsula but excluding the island of Madagascar). Here we describe a new titanosaurian sauropod dinosaur, Mansourasaurus shahinae gen. et sp. nov., from the Upper Cretaceous (Campanian) Quseir Formation of the Dakhla Oasis of the Egyptian Western Desert. Represented by an associated partial skeleton that includes cranial elements, Mansourasaurus is the most completely preserved land-living vertebrate from the post-Cenomanian Cretaceous (~94-66 million years ago) of the African continent. Phylogenetic analyses demonstrate that Mansourasaurus is nested within a clade of penecontemporaneous titanosaurians from southern Europe and eastern Asia, thereby providing the first unambiguous evidence for a post-Cenomanian Cretaceous continental vertebrate clade that inhabited both Africa and Europe. The close relationship of Mansourasaurus to coeval Eurasian titanosaurians indicates that terrestrial vertebrate dispersal occurred between Eurasia and northern Africa after the tectonic separation of the latter from South America ~100 million years ago. These findings counter hypotheses that dinosaur faunas of the African mainland were completely isolated during the post-Cenomanian Cretaceous.


Subject(s)
Animal Distribution , Dinosaurs/classification , Fossils/anatomy & histology , Africa , Animals , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Egypt , Europe , Paleontology , Phylogeny
9.
PLoS One ; 12(3): e0172409, 2017.
Article in English | MEDLINE | ID: mdl-28248973

ABSTRACT

Wadi El-Hitan, the UNESCO World Heritage Site, of the Fayum Depression in the northeast part of the Western Desert of Egypt, has produced a remarkable collection of Eocene vertebrates, in particular the fossil whales from which it derives its name. Here we describe a new genus and species of marine catfishes (Siluriformes; Ariidae), Qarmoutus hitanensis, from the base of the upper Eocene Birket Qarun Formation, based on a partial neurocranium including the complete left side, partial right dentary, left suspensorium, two opercles, left pectoral girdle and spine, nuchal plates, first and second dorsal spines, Weberian apparatus and a disassociated series of abdominal vertebrae. All of the elements belong to the same individual and some of them were found articulated. Qarmoutus gen. nov. is the oldest and the most complete of the Paleogene marine catfishes unearthed from the Birket Qarun Formation. The new genus exhibits distinctive features not seen in other African Paleogene taxa, such as different sculpturing on the opercle and pectoral girdle with respect to that on the neurocranium and nuchal plates, denticulate ornamentation on the skull bones arranged in longitudinal rows and forming a radiating pattern on the sphenotic, pterotic, extrascapular and the parieto-supraoccipital, indentations or pitted ornamentation on the nuchal plates as well as the parieto-supraoccipital process, strut-like radiating pattern of ornamentation on the opercle from the proximal articulation to margins, longitudinal, curved, reticulate ridges and tubercular ornamentations on the cleithrum, sinuous articulation between the parieto-supraoccipital process and the anterior nuchal plate, long, narrow, and arrowhead shaped nuchal shield, very small otic capsules restricted to the prootic. Multiple parsimony and Bayesian morphological phylogenetic analyses of Ariidae, run with and without "molecular scaffolds", yield contradictory results for the placement of Qarmoutus; the genus is either a phylogenetically basal ariid, or it is deeply nested within the ariid clade containing New World species of Sciades.


Subject(s)
Aquatic Organisms/classification , Catfishes/anatomy & histology , Catfishes/classification , Fossils/anatomy & histology , Animals , Egypt
10.
PeerJ ; 4: e2320, 2016.
Article in English | MEDLINE | ID: mdl-27602286

ABSTRACT

The "scaly-tailed squirrels" of the rodent family Anomaluridae have a long evolutionary history in Africa, and are now represented by two gliding genera (Anomalurus and Idiurus) and a rare and obscure genus (Zenkerella) that has never been observed alive by mammalogists. Zenkerella shows no anatomical adaptations for gliding, but has traditionally been grouped with the glider Idiurus on the basis of craniodental similarities, implying that either the Zenkerella lineage lost its gliding adaptations, or that Anomalurus and Idiurus evolved theirs independently. Here we present the first nuclear and mitochondrial DNA sequences of Zenkerella, based on recently recovered whole-body specimens from Bioko Island (Equatorial Guinea), which show unambiguously that Zenkerella is the sister taxon of Anomalurus and Idiurus. These data indicate that gliding likely evolved only once within Anomaluridae, and that there were no subsequent evolutionary reversals. We combine this new molecular evidence with morphological data from living and extinct anomaluromorph rodents and estimate that the lineage leading to Zenkerella has been evolving independently in Africa since the early Eocene, approximately 49 million years ago. Recently discovered fossils further attest to the antiquity of the lineage leading to Zenkerella, which can now be recognized as a classic example of a "living fossil," about which we know remarkably little. The osteological markers of gliding are estimated to have evolved along the stem lineage of the Anomalurus-Idiurus clade by the early Oligocene, potentially indicating that this adaptation evolved in response to climatic perturbations at the Eocene-Oligocene boundary (∼34 million years ago).

11.
PeerJ ; 4: e1717, 2016.
Article in English | MEDLINE | ID: mdl-26966657

ABSTRACT

The Fayum Depression of Egypt has yielded fossils of hystricognathous rodents from multiple Eocene and Oligocene horizons that range in age from ∼37 to ∼30 Ma and document several phases in the early evolution of crown Hystricognathi and one of its major subclades, Phiomorpha. Here we describe two new genera and species of basal phiomorphs, Birkamys korai and Mubhammys vadumensis, based on rostra and maxillary and mandibular remains from the terminal Eocene (∼34 Ma) Fayum Locality 41 (L-41). Birkamys is the smallest known Paleogene hystricognath, has very simple molars, and, like derived Oligocene-to-Recent phiomorphs (but unlike contemporaneous and older taxa) apparently retained dP(4)∕4 late into life, with no evidence for P(4)∕4 eruption or formation. Mubhammys is very similar in dental morphology to Birkamys, and also shows no evidence for P(4)∕4 formation or eruption, but is considerably larger. Though parsimony analysis with all characters equally weighted places Birkamys and Mubhammys as sister taxa of extant Thryonomys to the exclusion of much younger relatives of that genus, all other methods (standard Bayesian inference, Bayesian "tip-dating," and parsimony analysis with scaled transitions between "fixed" and polymorphic states) place these species in more basal positions within Hystricognathi, as sister taxa of Oligocene-to-Recent phiomorphs. We also employ tip-dating as a means for estimating the ages of early hystricognath-bearing localities, many of which are not well-constrained by geological, geochronological, or biostratigraphic evidence. By simultaneously taking into account phylogeny, evolutionary rates, and uniform priors that appropriately encompass the range of possible ages for fossil localities, dating of tips in this Bayesian framework allows paleontologists to move beyond vague and assumption-laden "stage of evolution" arguments in biochronology to provide relatively rigorous age assessments of poorly-constrained faunas. This approach should become increasingly robust as estimates are combined from multiple independent analyses of distantly related clades, and is broadly applicable across the tree of life; as such it is deserving of paleontologists' close attention. Notably, in the example provided here, hystricognathous rodents from Libya and Namibia that are controversially considered to be of middle Eocene age are instead estimated to be of late Eocene and late Oligocene age, respectively. Finally, we reconstruct the evolution of first lower molar size among Paleogene African hystricognaths using a Bayesian approach; the results of this analysis reconstruct a rapid latest Eocene dwarfing event along the lineage leading to Birkamys.

12.
PLoS One ; 6(2): e16525, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21364934

ABSTRACT

BACKGROUND: Gaudeamus is an enigmatic hystricognathous rodent that was, until recently, known solely from fragmentary material from early Oligocene sites in Egypt, Oman, and Libya. Gaudeamus' molars are similar to those of the extant cane rat Thryonomys, and multiple authorities have aligned Gaudeamus with Thryonomys to the exclusion of other living and extinct African hystricognaths; recent phylogenetic analyses have, however, also suggested affinities with South American caviomorphs or Old World porcupines (Hystricidae). METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the oldest known remains of Gaudeamus, including largely complete but crushed crania and complete upper and lower dentitions. Unlike younger Gaudeamus species, the primitive species described here have relatively complex occlusal patterns, and retain a number of plesiomorphic features. Unconstrained parsimony analysis nests Gaudeamus and Hystrix within the South American caviomorph radiation, implying what we consider to be an implausible back-dispersal across the Atlantic Ocean to account for Gaudeamus' presence in the late Eocene of Africa. An analysis that was constrained to recover the biogeographically more plausible hypothesis of caviomorph monophyly does not place Gaudeamus as a stem caviomorph, but rather as a sister taxon of hystricids. CONCLUSIONS/SIGNIFICANCE: We place Gaudeamus species in a new family, Gaudeamuridae, and consider it likely that the group originated, diversified, and then went extinct over a geologically brief period of time during the latest Eocene and early Oligocene in Afro-Arabia. Gaudeamurids are the only known crown hystricognaths from Afro-Arabia that are likely to be aligned with non-phiomorph members of that clade, and as such provide additional support for an Afro-Arabian origin of advanced stem and basal crown members of Hystricognathi.


Subject(s)
Classification/methods , Paleontology/history , Rodentia/classification , Skull/anatomy & histology , Tooth/anatomy & histology , Africa , Animals , Dentition , Egypt, Ancient , Fossils , History, Ancient , Models, Biological , Phylogeny , Phylogeography , Rodentia/anatomy & histology
13.
Proc Natl Acad Sci U S A ; 107(21): 9712-7, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20457923

ABSTRACT

Paleontological work carried out over the last 3 decades has established that three major primate groups were present in the Eocene of Africa-anthropoids, adapiforms, and advanced strepsirrhines. Here we describe isolated teeth of a previously undocumented primate from the earliest late Eocene ( approximately 37 Ma) of northern Egypt, Nosmips aenigmaticus, whose phylogenetic placement within Primates is unclear. Nosmips is smaller than the sympatric adapiform Afradapis but is considerably larger than other primate taxa known from the same paleocommunity. The species bears an odd mosaic of dental features, combining enlarged, elongate, and molariform premolars with simple upper molars that lack hypocones. Phylogenetic analysis across a series of different assumption sets variously places Nosmips as a stem anthropoid, a nonadapiform stem strepsirrhine, or even among adapiforms. This phylogenetic instability suggests to us that Nosmips likely represents a highly specialized member of a previously undocumented, and presumably quite ancient, endemic African primate lineage, the subordinal affinities of which have been obscured by its striking dental autapomorphies. Discriminant functions based on measurements of lower molar size and topography reliably classify extant prosimian primates into their correct dietary groups and identify Nosmips and Afradapis as omnivores and folivores, respectively. Although Nosmips currently defies classification, this strange and unexpected fossil primate nevertheless provides additional evidence for high primate diversity in northern Africa approximately 37 million years ago and further underscores the fact that our understanding of early primate evolution on that continent remains highly incomplete.


Subject(s)
Fossils , Primates/anatomy & histology , Primates/genetics , Animals , Egypt , Microscopy, Electron, Scanning , Phylogeny , Time Factors , Tooth/anatomy & histology
14.
Proc Natl Acad Sci U S A ; 106(39): 16722-7, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19805363

ABSTRACT

The early evolutionary and paleobiogeographic history of the diverse rodent clade Hystricognathi, which contains Hystricidae (Old World porcupines), Caviomorpha (the endemic South American rodents), and African Phiomorpha (cane rats, dassie rats, and blesmols) is of great interest to students of mammalian evolution, but remains poorly understood because of a poor early fossil record. Here we describe the oldest well-dated hystricognathous rodents from an earliest late Eocene (approximately 37 Ma) fossil locality in the Fayum Depression of northern Egypt. These taxa exhibit a combination of primitive and derived features, the former shared with Asian "baluchimyine" rodents, and the latter shared with Oligocene phiomorphs and caviomorphs. Phylogenetic analysis incorporating morphological, temporal, geographic, and molecular information places the new taxa as successive sister groups of crown Hystricognathi, and supports an Asian origin for stem Hystricognathi and an Afro-Arabian origin for crown Hystricognathi, stem Hystricidae, and stem Caviomorpha. Molecular dating of early divergences within Hystricognathi, using a Bayesian "relaxed clock" approach and multiple fossil calibrations, suggests that the split between Hystricidae and the phiomorph-caviomorph clade occurred approximately 39 Ma, and that phiomorphs and caviomorphs diverged approximately 36 Ma. These results are remarkably congruent with our phylogenetic results and the fossil record of hystricognathous rodent evolution in Afro-Arabia and South America.


Subject(s)
Evolution, Molecular , Rodentia/genetics , Animals , Fossils , Genetic Variation , Geography , Rodentia/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...