Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38958863

ABSTRACT

The investigations of real industrial wastewater, such as palm oil mill effluent (POME), as a recalcitrant pollutant remain a subject of global water pollution concern. Thus, this work introduced the preparation and modification of g-C3N4 and WO3 at optimum calcination temperature, where they were used as potent visible light-driven photocatalysts in the degradation of POME under visible light irradiation. Herein, g-C3N4-derived melamine and WO3 photocatalyst were obtained at different calcination temperatures in order to tune their light absorption ability and optoelectronics properties. Both photocatalysts were proven to have their distinct phases, crystallinity levels, and elements with increasing temperature, as demonstrated by the ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) results. Significantly, g-C3N4 (580 °C) and WO3 (450 °C) unitary photocatalysts exhibited the highest removal efficiency of POME without dilution due to good crystallinity, extended light absorption, high separation, and less recombination efficiency of electron-hole pairs. Furthermore, surprisingly, the superior energy storage photocatalytic performance with outstanding stability by WO3 achieved an approximately 10% increment during darkness, compared with g-C3N4 under visible light irradiation. Moreover, it has been proven that the WO3 and g-C3N4 photocatalysts are desirable photocatalysts for various pollutant degradations, with excellent visible-light utilization and favorable energy storage application.

2.
Article in English | MEDLINE | ID: mdl-38727970

ABSTRACT

Simple and efficient removal of Pb(II) ion from aqueous solution through adsorption has accelerated the development of many new composites to improve this popular method. In this study, the composites of graphene oxide (GO), zeolitic imidazolate framework-8 (ZIF-8), and magnetic materials were synthesized via coprecipitation method utilizing a different molar ratio between FeCl2 and FeCl3 of 1:0.5, 2:1, 3:1.5, and 4:2. The ZIF-8/GO was prepared via room temperature synthesis method prior to its further modification with magnetic materials for ease of separation. It was observed that the MZIF-8/GO2 of molar ratio 2:1 showed the best performance in adsorbing Pb(II) ion. As confirmed by FESEM image, it appeared to be ZIF-8 particles that have grown all over the GO platform and overlayed with Fe3O4 granular-shaped particles. The MZIF-8/GO2 successfully achieved 99% removal of Pb(II) within 10 min. The optimum values obtained for the initial concentration of Pb (II) were 100 mg/L, pH of 4 to 6, and adsorbent dosage used was 10 mg. The Langmuir isotherm and the pseudo-second-order kinetic model were deemed suitable to evaluate the adsorption of Pb(II) using MZIF-8/GO2. Results showed that MZIF-8GO2 achieved a maximum adsorption capacity of 625 mg/g of Pb(II) adsorption. All parent materials demonstrated a good synergistic effects, while exhibiting a significant contribution in providing active sites for Pb(II) adsorption. Therefore, this ternary composite of MZIF-8/GO2 is expected to be a promising adsorbent for Pb(II) adsorption from aqueous solution with an added value of ease of post phase separation using external magnetic field.

3.
Environ Sci Pollut Res Int ; 31(11): 16629-16641, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321283

ABSTRACT

In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.


Subject(s)
Ferric Compounds , Nanocomposites , Staphylococcus aureus , Bismuth/pharmacology , Charcoal/pharmacology , Decontamination , Light , Catalysis
4.
RSC Adv ; 14(4): 2311-2319, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38213981

ABSTRACT

Many studies have shown that sulfur-containing compounds significantly affect the solubility of carbon dioxide (CO2) in adsorption processes. However, limited attention has been devoted to incorporating organic fillers containing sulfur atoms into gas separation membrane matrices. This study addressed the gap by developing a new membrane using a polysulfone (PSf) polymer matrix and polyphenylene sulfide (PPs) filler material. This membrane could be used to separate mixtures of H2/CH4 and CO2/CH4 gases. Our study investigated the impact of various PPs loadings (1%, 5%, and 10% w/w) relative to PSf on membrane properties and gas separation efficiency. Comprehensive characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM), were employed to understand how adding PPs and coating with polydimethylsiloxane (PDMS) changed the structure of our membranes. XRD and FTIR analysis revealed distinct morphological disparities and functional groups between pure PSf and PSf/PPs composite membranes. SEM results show an even distribution of PPs on the membrane surface. The impact of adding PPs on gas separation was significant. CO2 permeability increased by 376.19%, and H2 permeability improved by 191.25%. The membrane's gas selection ability significantly improved after coating the surface with PDMS. CO2/CH4 separation increased by 255.06% and H2/CH4 separation by 179.44%. We also considered the Findex to assess the overall performance of the membrane. The 5% and 10% PPs membranes were exceptional. Adding PPs to membrane technology may greatly enhance gas separation processes.

5.
Nanomaterials (Basel) ; 12(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296863

ABSTRACT

In this current study, facile, one-pot synthesis of functionalised nanocomposite coating with simultaneous hydrophilic and oleophobic properties was successfully achieved via the sol-gel technique. The synthesis of this nanocomposite coating aims to develop a highly efficient, simultaneously oleophobic-hydrophilic coating intended for polymer membranes to spontaneously separate oil-in-water emulsions, therefore, mitigating the fouling issue posed by an unmodified polymer membrane. The simultaneous hydrophilicity-oleophobicity of the nanocoating can be applied onto an existing membrane to improve their capability to spontaneously separate oil-in-water substances in the treatment of oily wastewater using little to no energy and being environmentally friendly. The synthesis of hybrid chitosan-silica (CTS-Si)/halloysite nanotube (HNT) nanocomposite coating using the sol-gel method was presented, and the resultant coating was characterised using FTIR, XPS, XRD, NMR, BET, Zeta Potential, and TGA. The wettability of the nanocomposite coating was evaluated in terms of water and oil contact angle, in which it was coated onto a polymer substrate. The coating was optimised in terms of oil and water contact angle using Response Surface Modification (RSM) with Central Composite Design (CCD) theory. The XPS results revealed the successful grafting of organosilanes groups of HNT onto the CTS-Si denoted by a wide band between 102.6-103.7 eV at Si2p. FTIR spectrum presented significant peaks at 3621 cm-1; 1013 cm-1 was attributed to chitosan, and 787 cm-1 signified the stretching of Si-O-Si on HNT. 29Si, 27Al, and 13H NMR spectroscopy confirmed the extensive modification of the particle's shells with chitosan-silica hybrid covalently linked to the halloysite nanotube domains. The morphological analysis via FESEM resulted in the surface morphology that indicates improved wettability of the nanocomposite. The resultant colloids have a high colloid stability of 19.3 mV and electrophoretic mobility of 0.1904 µmcm/Vs. The coating recorded high hydrophilicity with amplified oleophobic properties depicted by a low water contact angle (WCA) of 11° and high oil contact angle (OCA) of 171.3°. The optimisation results via RSM suggested that the optimised sol pH and nanoparticle loadings were pH 7.0 and 1.05 wt%, respectively, yielding 95% desirability for high oil contact angle and low water contact angle.

6.
Membranes (Basel) ; 12(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35323817

ABSTRACT

Titanium dioxide hollow nanofibers (THN) are excellent photocatalysts for the photodegradation of Bisphenol A (BPA) due to their extensive surface area and good optical properties. A template synthesis technique is typically employed to produce titanium dioxide hollow nanofibers. This process, however, involves a calcination procedure at high temperatures that yields powder-form photocatalysts that require post-recovery treatment before recycling. Meanwhile, the immobilization of photocatalysts on/into a membrane has been reported to reduce the active surface area. Novel free-standing TiO2 hollow nanofibers were developed to overcome those shortcomings. The free-standing photocatalyst containing 0.75 g of THN (FS-THN-75) exhibited good adherence and connectivity between the nanofibers. The recyclability of FS-THN-75 outperformed the THN calcined at 600 °C (THN-600), which retained 80% of its original weight while maintaining excellent degradation performance. This study recommends the potential application of free-standing TiO2 hollow nanofibers as high potential novel photocatalysts for the treatment of BPA in wastewater.

7.
Membranes (Basel) ; 10(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998417

ABSTRACT

This research introduces zeolite carbon composite (ZCC) as a new filler on polymeric membranes based on the BTDA-TDI/MDI (P84) co-polyimide for the air separation process. The separation performance was further improved by a polydimethylsiloxane (PDMS) coating to cover up the surface defect. The incorporation of 1 wt% ZCC into P84 co-polyimide matrix enhanced the O2 permeability from 7.12 to 18.90 Barrer (2.65 times) and the O2/N2 selectivity from 4.11 to 4.92 Barrer (19.71% improvement). The PDMS coating on the membrane further improved the O2/N2 selectivity by up to 60%. The results showed that the incorporation of ZCC and PDMS coating onto the P84 co-polyimide membrane was able to increase the overall air separation performance.

8.
Chemosphere ; 204: 79-86, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29653325

ABSTRACT

Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation.


Subject(s)
Nanofibers/chemistry , Nitriles/chemistry , Oil and Gas Fields/chemistry , Photolysis , Water/chemistry , Acrylic Resins , Catalysis , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...