Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35336298

ABSTRACT

Nowadays, the rapid deployment of Wireless Sensor Networks (WSNs) and the integration of Internet of Things (IoT) technology has enabled their application to grow in various industrial fields in our country. Various factors influence the success of WSN development, particularly improvements in Medium Access Control (MAC) protocols, for which WSNs-IoT are deemed vital. Several aspects should be considered, such as energy consumption reduction, performance, scalability for a large deployment of nodes, and clustering intelligence. However, many protocols address this aspect in a constrained view of handling the medium access. This work presents a state-of-the-art review of recently proposed WSN MAC protocols. Different methods and approaches are proposed to enhance the main performance factors. Various performance issue factors are considered to be the main attribute that the MAC protocol should support. A comparison table is given to provide further details about using these approaches and algorithms to improve performance issues, such as network throughput, end-to-end delay, and packet drop, translated into energy consumption.

2.
PeerJ Comput Sci ; 7: e733, 2021.
Article in English | MEDLINE | ID: mdl-34901420

ABSTRACT

The development of Medium Access Control (MAC) protocols for Internet of Things should consider various aspects such as energy saving, scalability for a wide number of nodes, and grouping awareness. Although numerous protocols consider these aspects in the limited view of handling the medium access, the proposed Grouping MAC (GMAC) exploits prior knowledge of geographic node distribution in the environment and their priority levels. Such awareness enables GMAC to significantly reduce the number of collisions and prolong the network lifetime. GMAC is developed on the basis of five cycles that manage data transmission between sensors and cluster head and between cluster head and sink. These two stages of communication increase the efficiency of energy consumption for transmitting packets. In addition, GMAC contains slot decomposition and assignment based on node priority, and, therefore, is a grouping-aware protocol. Compared with standard benchmarks IEEE 802.15.4 and industrial automation standard 100.11a and user-defined grouping, GMAC protocols generate a Packet Delivery Ratio (PDR) higher than 90%, whereas the PDR of benchmark is as low as 75% in some scenarios and 30% in others. In addition, the GMAC accomplishes lower end-to-end (e2e) delay than the least e2e delay of IEEE with a difference of 3 s. Regarding energy consumption, the consumed energy is 28.1 W/h for GMAC-IEEE Energy Aware (EA) and GMAC-IEEE, which is less than that for IEEE 802.15.4 (578 W/h) in certain scenarios.

SELECTION OF CITATIONS
SEARCH DETAIL
...