Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Life Sci ; 97(2): 129-36, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24361362

ABSTRACT

AIMS: Pigment Epithelium Derived Factor (PEDF) is a multifunctional factor, which was found in mouse ovary and in human ovarian follicular fluid (FF). Its ovarian functions include anti-angiogenic actions. This study aimed to explore other PEDF-actions and the sites of PEDF expression in the human ovary. MATERIALS AND METHODS: We used paraffin-embedded human ovarian sections for PEDF-immunohistochemistry and IVF-derived human granulosa cells (GCs) for RT-PCR, Western blotting and functional studies, including measurement of cell viability (ATP-assay), apoptosis (caspase-assay) and reactive oxygen species (ROS). KEY FINDINGS: Immunohistochemistry revealed PEDF in the cytoplasm of GCs of avascular follicles from the preantral to the antral stage and in FF. PEDF was also found in luteinized GCs of the highly vascularized corpus luteum, a result not in line with a sole anti-angiogenic action. Like GCs in vivo, cultured human luteinizing GCs express PEDF. They also responded to exogenous recombinant PEDF. In low concentrations PEDF did not affect cell viability but caused generation ROS. ROS-induction by PEDF was a concentration-dependent process and may be due to the activity of NADPH oxidase (NOX) type 4 and/or 5, which as we found are expressed by GCs. An antioxidant and apocynin, which inhibits NOX, blocked ROS generation. High levels of exogenous recombinant PEDF induced apoptosis of GCs, which was prevented by antioxidants, implying involvement of ROS. SIGNIFICANCE: PEDF is emerging as an ovarian factor, which has unexpected ROS-augmenting activities in the human ovary. It may be involved in ovarian ROS homeostasis and may contribute to oxidative stress.


Subject(s)
Eye Proteins/metabolism , Granulosa Cells/metabolism , Nerve Growth Factors/metabolism , Ovary/metabolism , Reactive Oxygen Species/metabolism , Serpins/metabolism , Adult , Apoptosis , Blotting, Western , Cell Survival , Cells, Cultured , Dose-Response Relationship, Drug , Eye Proteins/administration & dosage , Female , Humans , Immunohistochemistry , Membrane Proteins/metabolism , NADPH Oxidase 4 , NADPH Oxidase 5 , NADPH Oxidases/metabolism , Nerve Growth Factors/administration & dosage , Reverse Transcriptase Polymerase Chain Reaction , Serpins/administration & dosage , Young Adult
2.
Hum Reprod ; 29(3): 555-67, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24287819

ABSTRACT

STUDY QUESTION: Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? SUMMARY ANSWER: Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. WHAT IS KNOWN ALREADY: DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. STUDY DESIGN, SIZE AND DURATION: We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. PARTICIPANTS/MATERIALS, SETTING AND METHODS: DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. MAIN RESULTS AND ROLE OF CHANCE: We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P < 0.05). Agonists of DA receptors (D1 and D2) did not induce ROS. DA, in the concentration range found in follicular fluid, did not induce apoptosis of cultured GCs. Computational modeling suggested, however, that ROS levels in GCs depend on the concentrations of DA and on the cellular uptake and metabolism. In PCOS-derived follicular fluid, the levels of DA were higher (P < 0.05) in GCs, the transcript levels of DAT and MAO-A/B in GCs were 2-fold higher (P < 0.05) and the DA-induced ROS levels were found to be more than 4-fold increased (P < 0.05) compared with non-PCOS cells. Furthermore, DA at a high concentration induced apoptosis in PCOS-derived GCs. LIMITATIONS, REASONS FOR CAUTION: While the results in IVF-derived follicular fluid and in GCs reveal for the first time the presence of DA in the human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the periovulatory follicular phase. The full functional importance of DA-induced ROS in small follicles and other compartments of the ovary, especially in PCOS samples, remains to be shown. WIDER IMPLICATIONS OF THE FINDINGS: The results identify DA as a factor in the human ovary, which, via ROS generation, could play a role in ovarian physiology and pathology. The results obtained in samples from women with PCOS suggest the involvement of DA, acting via ROS, in this condition. STUDY FUNDING/COMPETING INTERESTS: This work was supported by a grant from DFG MA1080/17-3 and in part MA1080/19-1. There are no competing interests.


Subject(s)
Dopamine/metabolism , Follicular Fluid/metabolism , Granulosa Cells/metabolism , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Dopamine Agonists/pharmacology , Dopamine Plasma Membrane Transport Proteins/biosynthesis , Female , Granulosa Cells/drug effects , Humans , Polycystic Ovary Syndrome/physiopathology
3.
Hum Reprod ; 27(11): 3249-58, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22888166

ABSTRACT

STUDY QUESTION: Is decorin (DCN), a putative modulator of growth factor (GF) signaling, expressed in the primate ovary and does it play a role in ovarian biology? SUMMARY ANSWER: DCN expression in the theca, the corpus luteum (CL), its presence in the follicular fluid (FF) and its actions revealed in human IVF-derived granulosa cells (GCs), suggest that it plays multiple roles in the ovary including folliculogenesis, ovulation and survival of the CL. WHAT IS KNOWN ALREADY: DCN is a secreted proteoglycan, which has a structural role in the extracellular matrix (ECM) and also interferes with the signaling of multiple GF/GF receptors (GFRs). However, DCN expression and action in the primate ovary has yet to be determined. STUDY DESIGN, SIZE, DURATION: Archival human and monkey ovarian samples were analyzed. Studies were conducted using FF and GC samples collected from IVF patients. PARTICIPANTS/MATERIALS, SETTING, METHODS: Immunohistochemistry, western blotting, RT-PCR, quantitative RT-PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) studies were complemented by cellular studies, including the measurements of intracellular Ca²âº, reactive oxygen species (ROS), epidermal GF receptor (EGFR) phosphorylation by DCN and caspase activity. MAIN RESULTS AND THE ROLE OF CHANCE: Immunohistochemistry revealed strong DCN staining in the connective tissue and follicular thecal compartments, but not in GCs of pre-antral and antral follicles. Pre-ovulatory follicles could not be studied, but DCN was associated with connective tissue of CL samples and the cytoplasm of luteal cells. DCN expression in monkey CL doubled (P < 0.05) towards the end of the luteal lifespan. DCN was found in human FF obtained from IVF patients (mean: 12.9 ng/ml; n = 20) as determined by ELISA. DCN mRNA and/or protein were detected in freshly isolated and cultured, luteinized human GCs. In the latter, exogenous human recombinant DCN increased intracellular Ca²âº levels and induced the production of ROS in a concentration-dependent manner. DCN, like epidermal GF, phosphorylated EGFR significantly (P < 0.05) and reduced the activity of caspase 3/7 in cultured GCs. The data indicate the expression of DCN in the theca of growing follicles, in FF of ovulatory follicles and in the CL. Therefore, DCN may exert paracrine actions via GF/GFR systems in multiple ovarian compartments. LIMITATIONS, REASONS FOR CAUTION: Functional studies were performed in cultures of human luteinized GCs, which are an apt model but may not fully mirror the pre-ovulatory GC compartment or the CL. Other human ovarian cells, including the thecal cells, were not available. WIDER IMPLICATIONS OF THE FINDINGS: In accordance with its evolving roles in other organs, ovarian DCN is an ECM-associated component, which acts as a multifunctional regulator of GF signaling in the primate ovary. DCN may thus be involved in folliculogenesis, ovulation and the regulation of the CL survival in primates. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Deutsche Forschungsgemeinschaft (DFG) MA1080/17-3 and in part DFG MA1080/21-1 (to AM), NIH grants HD24870 (S.R.O. and R.L.S.), the Eunice Kennedy Shriver NICHD/NIH through cooperative agreement HD18185 as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research (S.R.O.) and 8P51OD011092-53 for the operation of the Oregon National Primate Research Center (G.A.D., J.D.H., S.R.O. and R.L.S).


Subject(s)
Decorin/metabolism , Extracellular Matrix/metabolism , Luteal Phase/metabolism , Oogenesis , Ovary/metabolism , Ovulation/metabolism , Adult , Animals , Cells, Cultured , Corpus Luteum/cytology , Corpus Luteum/metabolism , Decorin/genetics , ErbB Receptors/metabolism , Female , Follicular Fluid/metabolism , Gene Expression Regulation , Granulosa Cells/cytology , Granulosa Cells/metabolism , Humans , Macaca mulatta , Ovary/cytology , Phosphorylation , Protein Processing, Post-Translational , RNA, Messenger/metabolism , Theca Cells/cytology , Theca Cells/metabolism
4.
Endocrinology ; 153(3): 1472-83, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22234472

ABSTRACT

The neurotransmitter norepinephrine (NE) is derived from the sympathetic nervous system and may be involved in the regulation of ovarian functions. Ovarian innervation increases in patients with polycystic ovarian syndrome (PCOS), prompting us to readdress a role of NE in the human ovary. In vitro fertilization-derived granulosa cells (GC), follicular fluids (FF), and ovarian sections were studied. NE was found in FF and freshly isolated GC, yet significantly lower levels of NE were detected in samples from PCOS patients. Furthermore, the metabolite normetanephrine was detected in FF. Together this suggests cellular uptake and metabolism of NE in GC. In accordance, the NE transporter and NE-metabolizing enzymes [catechol-o-methyltransferase (COMT) and monoamine oxidase A] were found in GC, COMT in GC and thecal cells of large human antral follicles in vivo and in cultured GC. Cellular uptake and metabolism of NE also occurred in cultured GC, events that could be blocked pharmacologically. NE, in the range present in FF, is unlikely to affect GC via activation of typical α- or ß-receptors. In line with this assumption, it did not alter phosphorylation of MAPK. However, NE robustly induced the generation of reactive oxygen species (ROS). This action occurred even when receptors were blocked but was prevented by blockers of NE transporter, COMT, and monoamine oxidase A. Thus, NE contributes to the microenvironment of preovulatory human follicles and is lower in PCOS. By inducing the production of ROS in GC, NE is linked to ROS-regulated events, which are emerging as crucial factors in ovarian physiology, including ovulation.


Subject(s)
Granulosa Cells/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine/metabolism , Ovary/metabolism , Adenosine Triphosphate/chemistry , Body Mass Index , Caspases/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Female , Granulosa Cells/cytology , Humans , Immunohistochemistry/methods , MAP Kinase Signaling System , Models, Biological , Ovary/cytology , Phosphorylation , Polycystic Ovary Syndrome/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
5.
Hum Reprod ; 25(4): 969-76, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20097922

ABSTRACT

BACKGROUND: Oxytocin (OT) is produced by granulosa cells (GCs) of pre-ovulatory ovarian follicles and the corpus luteum (CL) in some mammalian species. Actions of OT in the ovary have been linked to luteinization, steroidogenesis and luteolysis. Human IVF-derived (h)GCs possess a functional OT receptor (OTR), linked to elevation of intracellular Ca(2+), but molecular identity of the receptor for OT in human granulosa cells (hGCs) and down-stream consequences are not known. METHODS AND RESULTS: RT-PCR, sequencing and immunocytochemistry identified the genuine OTR in hGCs. OT (10 nM-10 microM) induced elevations of intracellular Ca(2+) levels (Fluo-4 measurements), which were blocked by tocinoic acid (TA; 50 microM, a selective OTR-antagonist). Down-stream effects of OTR-activation include a concentration dependent decrease in cell viability/metabolism, manifested by reduced ATP-levels, increased caspase3/7-activity (P < 0.05) and electron microscopical signs of cellular regression. TA blocked all of these changes. Immunoreactive OTR was found in the CL and GCs of large and, surprisingly, also small pre-antral follicles of the human ovary. Immunoreactive OTR in the rhesus monkey ovary was detected in primordial and growing primary follicles in the infantile ovary and in follicles at all stages of development in the adult ovary, as well as the CL: these results were corroborated by RT-PCR analysis of GCs excised by laser capture microdissection. CONCLUSIONS: Our study identifies genuine OTRs in human and rhesus monkey GCs. Activation by high levels of OT leads to cellular regression in hGCs. As GCs of small follicles also express OTRs, OT may have as yet unknown functions in follicular development.


Subject(s)
Apoptosis/genetics , Apoptosis/physiology , Granulosa Cells/cytology , Granulosa Cells/metabolism , Macaca mulatta/genetics , Macaca mulatta/metabolism , Ovary/cytology , Ovary/metabolism , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Adenosine Triphosphate/metabolism , Animals , Base Sequence , Calcium Signaling , Corpus Luteum/cytology , Corpus Luteum/metabolism , DNA Primers/genetics , Female , Humans , Immunohistochemistry , In Vitro Techniques , Microscopy, Electron, Transmission , Oxytocin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...