Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 21(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803171

ABSTRACT

This work proposes a new approach to improve swarm intelligence algorithms for dynamic optimization problems by promoting a balance between the transfer of knowledge and the diversity of particles. The proposed method was designed to be applied to the problem of video tracking targets in environments with almost constant lighting. This approach also delimits the solution space for a more efficient search. A robust version to outliers of the double exponential smoothing (DES) model is used to predict the target position in the frame delimiting the solution space in a more promising region for target tracking. To assess the quality of the proposed approach, an appropriate tracker for a discrete solution space was implemented using the meta-heuristic Shuffled Frog Leaping Algorithm (SFLA) adapted to dynamic optimization problems, named the Dynamic Shuffled Frog Leaping Algorithm (DSFLA). The DSFLA was compared with other classic and current trackers whose algorithms are based on swarm intelligence. The trackers were compared in terms of the average processing time per frame and the area under curve of the success rate per Pascal metric. For the experiment, we used a random sample of videos obtained from the public Hanyang visual tracker benchmark. The experimental results suggest that the DSFLA has an efficient processing time and higher quality of tracking compared with the other competing trackers analyzed in this work. The success rate of the DSFLA tracker is about 7.2 to 76.6% higher on average when comparing the success rate of its competitors. The average processing time per frame is about at least 10% faster than competing trackers, except one that was about 26% faster than the DSFLA tracker. The results also show that the predictions of the robust DES model are quite accurate.

2.
Sensors (Basel) ; 20(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971871

ABSTRACT

Texture segmentation is a challenging problem in computer vision due to the subjective nature of textures, the variability in which they occur in images, their dependence on scale and illumination variation, and the lack of a precise definition in the literature. This paper proposes a method to segment textures through a binary pixel-wise classification, thereby without the need for a predefined number of textures classes. Using a convolutional neural network, with an encoder-decoder architecture, each pixel is classified as being inside an internal texture region or in a border between two different textures. The network is trained using the Prague Texture Segmentation Datagenerator and Benchmark and tested using the same dataset, besides the Brodatz textures dataset, and the Describable Texture Dataset. The method is also evaluated on the separation of regions in images from different applications, namely remote sensing images and H&E-stained tissue images. It is shown that the method has a good performance on different test sets, can precisely identify borders between texture regions and does not suffer from over-segmentation.

SELECTION OF CITATIONS
SEARCH DETAIL