Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Braz J Microbiol ; 54(3): 1411-1419, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37178262

ABSTRACT

The genetic diversity of the dengue virus is characterized by four circulating serotypes, several genotypes, and an increasing number of existing lineages that may have differences in the potential to cause epidemics and disease severity. Accurate identification of the genetic variability of the virus is essential to identify lineages responsible for an epidemic and understanding the processes of virus spread and virulence. Here, we characterize, using portable nanopore genomic sequencing, different lineages of dengue virus 2 (DENV-2) detected in 22 serum samples from patients with and without dengue warning signs attended at Hospital de Base of São José do Rio Preto (SJRP) in 2019, during a DENV-2 outbreak. Demographic, epidemiological, and clinical data were also analyzed. The phylogenetic reconstruction and the clinical data showed that two lineages belonging to the American/Asian genotype of DENV-2-BR3 and BR4 (BR4L1 and BR4L2)-were co-circulating in SJRP. Although preliminary, these results indicate no specific association between clinical form and phylogenetic clustering at the virus consensus sequence level. Studies with larger sample sizes and which explore single nucleotide variants are needed. Therefore, we showed that portable nanopore genome sequencing could generate quick and reliable sequences for genomic surveillance to monitor viral diversity and its association with disease severity as an epidemic unfolds.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue Virus/genetics , Dengue/epidemiology , Phylogeny , Base Sequence , Disease Outbreaks , Serogroup , Genotype , Genetic Variation
2.
Am. j. trop. med. hyg ; 102(4): 800-803, Apr. 2020. ilus
Article in English | Sec. Est. Saúde SP, SESSP-IIERPROD, Sec. Est. Saúde SP | ID: biblio-1095179

ABSTRACT

Chagas is a neglected disease endemic in Latin America. Vector transmission control had been aggressively performed. Recent entomological surveillance in Brazil has revealed natural infection rates ranging from 0.40% to 0.52%. Although serological surveys are complex to develop, they are important for disease control. In this study, we validated the use of saliva in ELISA commercial kits with a cohort of 100 patients with Chagas disease followed at Hospital das Clinicas in São Paulo, Brazil, and 50 healthy controls. Five ELISA kits for detecting antibodies against Trypanosoma cruzi were tested. The best discrimination between Chagas patients and controls was observed with the Wiener kit, which yielded a sensitivity of 97% and a specificity of 100%. Our findings reveal that the use of saliva may be an alternative to large-scale screening surveys in detecting T. cruzi antibodies; it is a noninvasive sample collection method potentially key to large-scale screening in children


Subject(s)
Humans , Trypanosoma cruzi/cytology , Brazil/epidemiology , Chagas Disease/epidemiology
3.
Am J Trop Med Hyg ; 102(4): 800-803, 2020 04.
Article in English | MEDLINE | ID: mdl-32100675

ABSTRACT

Chagas is a neglected disease endemic in Latin America. Vector transmission control had been aggressively performed. Recent entomological surveillance in Brazil has revealed natural infection rates ranging from 0.40% to 0.52%. Although serological surveys are complex to develop, they are important for disease control. In this study, we validated the use of saliva in ELISA commercial kits with a cohort of 100 patients with Chagas disease followed at Hospital das Clinicas in São Paulo, Brazil, and 50 healthy controls. Five ELISA kits for detecting antibodies against Trypanosoma cruzi were tested. The best discrimination between Chagas patients and controls was observed with the Wiener kit, which yielded a sensitivity of 97% and a specificity of 100%. Our findings reveal that the use of saliva may be an alternative to large-scale screening surveys in detecting T. cruzi antibodies; it is a noninvasive sample collection method potentially key to large-scale screening in children.


Subject(s)
Antibodies, Protozoan/analysis , Chagas Disease/diagnosis , Endemic Diseases , Enzyme-Linked Immunosorbent Assay/methods , Saliva/immunology , Trypanosoma cruzi/immunology , Brazil/epidemiology , Case-Control Studies , Chagas Disease/epidemiology , Cohort Studies , Humans , Sensitivity and Specificity , Seroepidemiologic Studies
4.
PLoS Negl Trop Dis ; 13(3): e0007065, 2019 03.
Article in English | MEDLINE | ID: mdl-30845267

ABSTRACT

BACKGROUND: Since its first detection in the Caribbean in late 2013, chikungunya virus (CHIKV) has affected 51 countries in the Americas. The CHIKV epidemic in the Americas was caused by the CHIKV-Asian genotype. In August 2014, local transmission of the CHIKV-Asian genotype was detected in the Brazilian Amazon region. However, a distinct lineage, the CHIKV-East-Central-South-America (ECSA)-genotype, was detected nearly simultaneously in Feira de Santana, Bahia state, northeast Brazil. The genomic diversity and the dynamics of CHIKV in the Brazilian Amazon region remains poorly understood despite its importance to better understand the epidemiological spread and public health impact of CHIKV in the country. METHODOLOGY/PRINCIPAL FINDINGS: We report a large CHIKV outbreak (5,928 notified cases between August 2014 and August 2018) in Boa vista municipality, capital city of Roraima's state, located in the Brazilian Amazon region. We generated 20 novel CHIKV-ECSA genomes from the Brazilian Amazon region using MinION portable genome sequencing. Phylogenetic analyses revealed that despite an early introduction of the Asian genotype in 2015 in Roraima, the large CHIKV outbreak in 2017 in Boa Vista was caused by an ECSA-lineage most likely introduced from northeastern Brazil. Epidemiological analyses suggest a basic reproductive number of R0 of 1.66, which translates in an estimated 39 (95% CI: 36 to 45) % of Roraima's population infected with CHIKV-ECSA. Finally, we find a strong association between Google search activity and the local laboratory-confirmed CHIKV cases in Roraima. CONCLUSIONS/SIGNIFICANCE: This study highlights the potential of combining traditional surveillance with portable genome sequencing technologies and digital epidemiology to inform public health surveillance in the Amazon region. Our data reveal a large CHIKV-ECSA outbreak in Boa Vista, limited potential for future CHIKV outbreaks, and indicate a replacement of the Asian genotype by the ECSA genotype in the Amazon region.


Subject(s)
Chikungunya Fever/epidemiology , Chikungunya virus/genetics , Disease Outbreaks/prevention & control , Genome, Viral/genetics , Zoonoses/epidemiology , Animals , Brazil/epidemiology , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Epidemiological Monitoring , Humans , Phylogeny , Whole Genome Sequencing , Zoonoses/transmission , Zoonoses/virology
5.
Rev Inst Med Trop Sao Paulo ; 60: e77, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30517247

ABSTRACT

Gut microbiota has been the subject of various molecular studies mainly due to its importance and wide-ranging relationships with human hosts. However, the storage of fecal samples prior to DNA extraction is critical when characterizing the composition of intestinal microbiota. Therefore, we aimed to understand the effects of different fecal storage methods to characterize intestinal microbiota using Next Generation Sequencing (NGS) as well as to establish an alternative conservation method of bacterial genetic material in these samples using guanidine. Stool samples from 10 healthy volunteers were collected. Each sample was divided into five aliquots: one aliquot was extracted immediately after collection (fresh) and two aliquots were subjected to freezing at -20 °C or -80 °C and extracted after 48 h. The other two aliquots were stored in guanidine at room temperature or 4 °C and extracted after 48 h. The V4 hypervariable regions of the bacterial and archeal 16S rRNA gene were amplified by PCR and sequenced using an Ion Torrent PGM platform for NGS. The data were analyzed using QIIME software. Statistical significance was determined using a non-parametric Kruskal-Wallis test. A total of 11,494,688 reads with acceptable quality were obtained. Unweighted principal coordinate analysis (PCoA) revealed that the samples were clustered based on the host rather than by the storage group. At the phylum and genus levels, we observed statistically significant differences between two genera, Proteobacteria (p=0.013) and Suterella (p=0.004), comparing frozen samples with guanidine-stored samples. Our data suggest that the use of guanidine can preserve bacterial genetic materials as well as freezing, providing additional conveniences.


Subject(s)
DNA, Bacterial/genetics , Feces/microbiology , Gastrointestinal Microbiome/genetics , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , Specimen Handling/methods , Adult , Educational Status , Female , Humans , Male , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...