Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; 148: 105219, 2021 01.
Article in English | MEDLINE | ID: mdl-33301880

ABSTRACT

Alzheimer's disease (AD) is the most common dementia worldwide and is characterized by the presence of senile plaques by amyloid-beta (Aß) and neurofibrillary tangles of hyperphosphorylated Tau protein. These changes lead to progressive neuronal degeneration and dysfunction, resulting in severe brain atrophy and cognitive deficits. With the discovery that neurogenesis persists in the adult mammalian brain, including brain regions affected by AD, studies of the use of neural stem cells (NSCs) for the treatment of neurodegenerative diseases to repair or prevent neuronal cell loss have increased. Here we demonstrate that leptin administration increases the neurogenic process in the dentate gyrus of the hippocampus as well as in the subventricular zone of lateral ventricles of adult and aged mice. Chronic treatment with leptin increased NSCs proliferation with significant effects on proliferation and differentiation of newborn cells. The expression of the long form of the leptin receptor, LepRb, was detected in the neurogenic niches by reverse qPCR and immunohistochemistry. Moreover, leptin modulated astrogliosis, microglial cell number and the formation of senile plaques. Additionally, leptin led to attenuation of Aß-induced neurodegeneration and superoxide anion production as revealed by Fluoro-Jade B and dihydroethidium staining. Our study contributes to the understanding of the effects of leptin in the brain that may lead to the development of new therapies to treat Alzheimer's disease.


Subject(s)
Alzheimer Disease/genetics , Cell Proliferation/drug effects , Hippocampus/drug effects , Leptin/pharmacology , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Amyloid beta-Peptides/drug effects , Amyloid beta-Peptides/metabolism , Animals , Cell Proliferation/genetics , Disease Models, Animal , Gliosis/pathology , Humans , Lateral Ventricles/drug effects , Mice , Microglia/drug effects , Neurogenesis/genetics , Plaque, Amyloid/pathology , Receptors, Leptin/genetics , Superoxides/metabolism
2.
Neuropharmacology ; 162: 107813, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31628935

ABSTRACT

The sister incretins glucagon-like peptide-1 (GLP-1) and glucagon dependent insulinotropic polypeptide (GIP) are growth factors responsible for re-sensitizing insulin signalling. Interestingly, their analogues, originally developed to treat type 2 diabetes (T2D), have demonstrated a range of neuroprotective and neurorestorative properties. Novel peptide GLP-1/GIP dual agonist (DA) shows good effects in diabetic patients, superior to the effects demonstrated by single GIP or GLP-1 mimetics. Furthermore, novel DAs have shown considerable neuroprotection in neurodegenerative models. Here, we investigated the neuroprotective and restorative involvement of the DA DA-JC1 and liraglutide (Lg), a single GLP-1 receptor analogue, in vitro using human neuroblastoma (SH-SY5Y) against oxidative stress induced by oxygen peroxide (H2O2), and in vivo, in a mouse model of Alzheimer's disease (AD), APP/PS1. First, we determined the ideal concentration of the peptides and demonstrated that DA-JC1 protects cells against oxidative stress more than Lg, improving cell viability, normalizing reactive oxygen species (ROS) and attenuating DNA damage generated by H2O2. Moreover, in 10-to-12-months-old APP/PS1 animals treated for 4 weeks, both Lg and DA-JC1 were very efficient in stimulating neurogenesis and reducing some important hallmarks of AD, but DA-JC1 was better than Lg in attenuating crucial neuroinflammatory markers, especially reactive astrocyte, in both wild-type (WT) and APP/PS1 hippocampal regions. Altogether, this study suggests an interactive role of GLP-1 and GIP receptors, enhancing the efficiency of single GLP-1 analogues, especially in attenuating oxidative stress and neuroinflammation. We confirm that combining GLP-1 and GIP results in a variety of beneficial effects, providing key evidences for the development of a promising therapeutic strategy for AD.


Subject(s)
Alzheimer Disease/metabolism , Brain/drug effects , DNA Damage/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Incretins/pharmacology , Liraglutide/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Receptors, Gastrointestinal Hormone/agonists , Alzheimer Disease/genetics , Amyloid beta-Peptides/drug effects , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Cell Survival , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , Hydrogen Peroxide , In Vitro Techniques , Lateral Ventricles/drug effects , Lateral Ventricles/metabolism , Lateral Ventricles/pathology , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Oxidative Stress/drug effects , Peptides/pharmacology , Presenilin-1/genetics
3.
ACS Appl Mater Interfaces ; 10(43): 36693-36702, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30298718

ABSTRACT

Delivering drugs and agents to the brain is a huge challenge, especially for chronic neurodegenerative disorders, such as Alzheimer's disease (AD). For this, prolonged and sustained release methods to increase brain uptake represent an impacting concept. The bioresorbable polymer poly-lactic acid (PLA) has high potential for medical implants; at the same time, glucagon-like peptide-1 (GLP-1) analogues have considerable neuroprotective attributes and represent a therapeutic strategy for AD. Here, a biodevice is produced by electrospinning PLA with a GLP-1 analogue (liraglutide, LG), coated with a thin layer of gelatin. The biodevice is subcutaneously implanted in a transgenic mouse model of AD and LG is released for 14 days in mice serum. After 4 weeks of implantation, crucial hallmarks of the AD are highly diminished: hippocampal senile amyloid ß plaque load and neuroinflammatory markers. Furthermore, neurogenesis is enhanced in the subventricular zone, an important neurogenic niche in the brain. The designed biodevice holds great promise for being an affordable candidate to act as a prolonged drug provider, promoting LG mission through increasing its lifetime, constituting a relevant approach for old and impaired brain.


Subject(s)
Alzheimer Disease/drug therapy , Brain/drug effects , Drug Delivery Systems , Liraglutide/administration & dosage , Amyloid beta-Peptides/metabolism , Animals , Cell Line, Tumor , DNA Damage , Female , Gelatin/chemistry , Humans , Inflammation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/cytology , Plaque, Amyloid , Polyesters/chemistry , Prostheses and Implants , Tissue Scaffolds
4.
Mol Neurobiol ; 54(9): 6827-6838, 2017 11.
Article in English | MEDLINE | ID: mdl-27766537

ABSTRACT

Bioresorbable electrospun fibres have highly functional features that can preserve drug efficacy, avoiding premature degradation, and control drug release rates over long periods. In parallel, it is known that Alzheimer's disease (AD) has been linked to impaired insulin signalling in the brain. Glucagon-like peptide 1 (GLP-1) analogues have beneficial effects on insulin release and possess exceptional neuroprotective properties. Herein, we describe for the first time the incorporation of a GLP-1 analogue, liraglutide, into electrospun poly (lactic acid) (PLA) fibres with in situ gelatin capsules, in order to provide the controlled release of liraglutide, improving neuroprotective properties. In this study, PLA, a bioresorbable polymer in which degradation products have neurogenesis characteristics, was electrospun and loaded with liraglutide. Moreover, PLA/liraglutide fibres were encapsulated with gelatin and were shown to have better properties than the non-encapsulated fibres in terms of the controlled release of liraglutide, which was accomplished in the present study for up to 60 days. We observed that this biodevice was completely encapsulated with gelatin, which made the material more hydrophilic than PLA fibres alone and the biodevice was able to enhance fibroblast interaction and reduce mitochondrial stress in a neuroblastoma cell line. In this manner, this study introduces a new material which can improve neuroprotective properties from AD oxidative stress via the sustained long-lasting release of liraglutide. Graphical Abstract ᅟ.


Subject(s)
Absorbable Implants , Alzheimer Disease/metabolism , Cytoprotection/physiology , Liraglutide/administration & dosage , Oxidative Stress/physiology , Polyesters/administration & dosage , Absorbable Implants/trends , Alzheimer Disease/prevention & control , Animals , Cell Line, Tumor , Cytoprotection/drug effects , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Liraglutide/pharmacokinetics , Mice , Oxidative Stress/drug effects , Polyesters/pharmacokinetics
5.
Rev. bras. eng. biomed ; 29(2): 193-198, jun. 2013. ilus, graf
Article in Portuguese | LILACS | ID: lil-680845

ABSTRACT

INTRODUÇÃO: A terapia fotodinâmica (PDT) é uma modalidade terapêutica para o tratamento de doenças neoplásicas e não neoplásicas tendo como alvo a mitocôndria, organela que tem atraído maior atenção devido ao seu envolvimento direto no processo de morte celular. Inibindo a atividade mitocondrial é possível estudar outras organelas envolvidas no processo de morte celular. O objetivo deste estudo foi avaliar a importância da mitocôndria no processo de morte celular na linhagem celular M3, induzida após a fotossensibilização com Photosan3®. MÉTODOS: Para os experimentos foram utilizados os seguintes grupos: grupo controle I, células sem nenhum tratamento; grupo II PDT, células incubadas com Photosan3®; grupo III PDT, células incubadas com CsA e Photosan3®; grupo IV células tratadas somente com Estaurosporina (STS). Após a incubação com o fotossensibilizador os grupos II e III foram irradiados com diodo laser semicondutor (λ 670 nm). Todos os grupos foram incubados a 37 ºC em estufa com atmosfera de 5% de CO2, por 24 h e 48 h. No final destes períodos todos os grupos foram submetidos ao ensaio de citotoxicidade, pelo teste de MTT (brometo de 3-[4,5-dimetil-tiazol-2-il]-2,5-difeniltetrazólio) e corados com anexina V e iodeto de propídio para determinar a proporção de morte celular, sendo as análises realizadas por microscopia de fluorescência. RESULTADOS: Os resultados mostraram que as células realizaram apoptose por via independente de mitocôndria. A CsA apresentou-se eficiente na inativação da mitocôndria no processo apoptótico durante a fotossensibilização com Photosan3®. CONCLUSÃO: A associação de CsA e Photosan3® na terapia fotodinâmica demonstrou a presença de morte celular por apoptose independente da participação mitocondrial.


INTRODUCTION: Photodynamic therapy (PDT) is a therapeutic modality for the treatment of neoplastic and non-neoplastic diseases. Mitochondria have attracted great attention due to their direct involvement in the cell death process. By inhibiting the mitochondrial activity, it is possible to study other organelles involved in the cell death process. The objective of this study was to evaluate the involvement of mitochondria in induced cell death process in M3 cell line after photosensitization with Photosan3®. METHODS: The experiments involved the following groups: control group I, cells with no treatment; group II PDT, cells incubated with Photosan3®; group III PDT, cells incubated with CsA and Photosan3®; group IV, cells treated only with treated only Staurosporine (STS). After incubation with the photosensitizer, the groups II and III were irradiated using a semiconductor laser diode (λ 670 nm). All groups were incubated at 37 ºC in an atmosphere of 5% CO2 for 24 and 48 h. After this period, all groups were subjected to the MTT (3 - [4,5-dimethyl-thiazol-2-yl] -2,5-diphenyltetrazolium bromide) cytotoxicity assay and labeled with Annexin V and Iodide Propidium to determine the rate of cell death. The analyses were performed by fluorescence microscopy. RESULTS: The results show that PDT Photosan leads to apoptosis of breast cell line M3 by a route independent of the mitochondria. CONCLUSION: The association of CsA and Photosan3® in photodynamic therapy showed the occurrence of cell death (apoptosis) independent of mitochondrial participation.

SELECTION OF CITATIONS
SEARCH DETAIL
...