Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(93): 13820-13830, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37921594

ABSTRACT

Oxides offer unique physical and chemical properties that inspire rapid advances in materials chemistry to design and nanoengineer materials compositions and implement them in devices for a myriad of applications. Chemical deposition methods are gaining attention as a versatile approach to develop complex oxide thin films and nanostructures by properly selecting compatible chemical precursors and designing an accurate cost-effective thermal treatment. Here, upon describing the basics of chemical solution deposition (CSD) and atomic layer deposition (ALD), some examples of the growth of chemically-deposited functional complex oxide films that can have applications in energy and electronics are discussed. To go one step further, the suitability of these techniques is presented to prepare freestanding complex oxides which can notably broaden their applications. Finally, perspectives on the use of chemical methods to prepare future materials are given.

2.
ACS Appl Mater Interfaces ; 14(10): 12845-12854, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35232015

ABSTRACT

The preparation and manipulation of crystalline yet bendable functional complex oxide membranes has been a long-standing issue for a myriad of applications, in particular, for flexible electronics. Here, we investigate the viability to prepare magnetic and crystalline CoFe2O4 (CFO) membranes by means of the Sr3Al2O6 (SAO) sacrificial layer approach using chemical deposition techniques. Meticulous chemical and structural study of the SAO surface and SAO/CFO interface properties have allowed us to identify the formation of an amorphous SAO capping layer and carbonates upon air exposure, which dictate the crystalline quality of the subsequent CFO film growth. Vacuum annealing at 800 °C of SAO films promotes the elimination of the surface carbonates and the reconstruction of the SAO surface crystallinity. Ex-situ atomic layer deposition of CFO films at 250 °C on air-exposed SAO offers the opportunity to avoid high-temperature growth while achieving polycrystalline CFO films that can be successfully transferred to a polymer support preserving the magnetic properties under bending. Float on and transfer provides an alternative route to prepare freestanding and wrinkle-free CFO membrane films. The advances and challenges presented in this work are expected to help increase the capabilities to grow different oxide compositions and heterostructures of freestanding films and their range of functional properties.

3.
Small ; 14(44): e1802864, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30286277

ABSTRACT

A simple and generic strategy is proposed to pattern thin films deposited by a solution processable route. A soft approach based on an automated scalpel technique is developed to engrave thin films in a single step for sculpting functional planar devices. MXenes-the emerging family of 2D transition metal carbides and nitrides-combine metallic conductivity and hydrophilicity, enabling solution processing of transparent conducting electrodes (TCEs) under ambient conditions. Scalable dip coating is employed to process titanium carbide, Ti3 C2 , MXene thin films with excellent optoelectronic properties, achieving electrical Figure of merit up to 14. Automated scalpel engraving is adopted to fabricate transparent and semi-transparent MXene microsupercapacitors in a single step, hitherto not reported. Combining TCE and pseudocapacitive characteristics, MXene devices show excellent capacitive storage capabilities at high rates, without the aid of external metal current collectors. This technique allows for maskless patterning of solution processed thin films without losing intrinsic physicochemical properties and can be extended to fabricate heterostructured hybrid devices out of solution processable materials.

4.
Front Chem ; 6: 110, 2018.
Article in English | MEDLINE | ID: mdl-29707536

ABSTRACT

The fabrication of small anatase titanium dioxide (TiO2) nanoparticles (NPs) attached to larger anisotropic gold (Au) morphologies by a very fast and simple two-step microwave-assisted synthesis is presented. The TiO2/Au NPs are synthesized using polyvinylpyrrolidone (PVP) as reducing, capping and stabilizing agent through a polyol approach. To optimize the contact between the titania and the gold and facilitate electron transfer, the PVP is removed by calcination at mild temperatures. The nanocatalysts activity is then evaluated in the photocatalytic production of hydrogen from water/ethanol mixtures in gas-phase at ambient temperature. A maximum value of 5.3 mmol·[Formula: see text]h-1 (7.4 mmol·[Formula: see text]h-1) of hydrogen is recorded for the system with larger gold particles at an optimum calcination temperature of 450°C. Herein we demonstrate that TiO2-based photocatalysts with high Au loading and large Au particle size (≈50 nm) NPs have photocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...