Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(7): 7702-7718, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39057097

ABSTRACT

The IgLON family of cell adhesion molecules consists of five members (LSAMP, OPCML, neurotrimin, NEGR1, and IgLON5) discovered as supporters of neuronal development, axon growth and guidance, and synapse formation and maintenance. Tumour suppression properties have recently been emerging based on antiproliferative effects through the modulation of oncogenic pathways. Available evidence endorses a role for non-coding RNAs or microRNAs as relevant controllers of IgLON molecule expression that can impact their critical physiological and pathological roles. Current findings support a function for long non-coding RNAs and microRNAs in the modulation of LSAMP expression in cell senescence, cancer biogenesis, addiction, and pulmonary hypertension. For OPCML, data point to a role for several microRNAs in the control of tumorigenesis. MicroRNAs were detected in neurotrimin-mediated functions in cancer biogenesis and in Schwann cell responses to peripheral nerve injury. For NEGR1, studies have mainly investigated microRNA involvement in neuronal responses to ischaemic injury, although data also exist about tumorigenesis and endothelial cell dysfunction. For IgLON5, information is only available about microRNA involved in myocardial infarction. In conclusion, despite much information being still missing and further research needed, the emerging picture favours a model in which non-coding RNAs exert a crucial role in modulating IgLON expression, ultimately affecting their important physiological functions.

2.
Genes (Basel) ; 14(10)2023 09 28.
Article in English | MEDLINE | ID: mdl-37895235

ABSTRACT

In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Cell Adhesion Molecules/metabolism , Immunoglobulins/genetics , Brain/metabolism , GPI-Linked Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics
3.
Sci Rep ; 13(1): 10050, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344495

ABSTRACT

We report on the effects of visible light on the low temperature electronic properties of the spin-polarized two dimensional electron system (2DES) formed at the interfaces between LaAlO[Formula: see text], EuTiO[Formula: see text] and (001) SrTiO[Formula: see text]. A strong, persistent modulation of both longitudinal and transverse conductivity was obtained using light emitting diodes (LEDs) with emissions at different wavelengths in the visible spectrum range. In particular, Hall effect data show that visible light induces a non-volatile electron filling of bands with mainly 3d[Formula: see text] character, and at the same time an enhancement of the anomalous Hall effect associated to the magnetic properties of the system. Accordingly, a suppression of the weak-anti localization corrections to the magneto-conductance is found, which correlates with an enhancement of the spin-polarization and of the ferromagnetic character of 2DES. The results establish the LED-induced photo-doping as a viable route for the control of the ground state properties of artificial spin-polarized oxide 2DES.

4.
Article in English | MEDLINE | ID: mdl-36901549

ABSTRACT

The association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) has been extensively demonstrated, but despite this, the pathophysiological mechanisms underlying it are still unknown. In previous work, we discovered a central role for the autophagy pathway in the common alterations observed between AD and T2DM. In this study, we further investigate the role of genes belonging to this pathway, measuring their mRNA expression and protein levels in 3xTg-AD transgenic mice, an animal model of AD. Moreover, primary mouse cortical neurons derived from this model and the human H4Swe cell line were used as cellular models of insulin resistance in AD brains. Hippocampal mRNA expression showed significantly different levels for Atg16L1, Atg16L2, GabarapL1, GabarapL2, and Sqstm1 genes at different ages of 3xTg-AD mice. Significantly elevated expression of Atg16L1, Atg16L2, and GabarapL1 was also observed in H4Swe cell cultures, in the presence of insulin resistance. Gene expression analysis confirmed that Atg16L1 was significantly increased in cultures from transgenic mice when insulin resistance was induced. Taken together, these results emphasise the association of the autophagy pathway in AD-T2DM co-morbidity, providing new evidence about the pathophysiology of both diseases and their mutual interaction.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Humans , Animals , Alzheimer Disease/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Disease Models, Animal , Comorbidity , Mice, Transgenic , Autophagy , RNA, Messenger , Carrier Proteins
5.
Cells ; 10(11)2021 11 06.
Article in English | MEDLINE | ID: mdl-34831273

ABSTRACT

Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.


Subject(s)
Cell Communication , Recovery of Function , Stroke/pathology , Stroke/physiopathology , Animals , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Humans , Neuronal Plasticity , Oligodendroglia/pathology
6.
Phys Rev Lett ; 125(12): 126401, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016714

ABSTRACT

Despite its simple structure and low degree of electronic correlation, SrTiO_{3} (STO) features collective phenomena linked to charge transport and, ultimately, superconductivity, that are not yet fully explained. Thus, a better insight into the nature of the quasiparticles shaping the electronic and conduction properties of STO is needed. We studied the low-energy excitations of bulk STO and of the LaAlO_{3}/SrTiO_{3} two-dimensional electron gas (2DEG) by Ti L_{3} edge resonant inelastic x-ray scattering. In all samples, we find the hallmark of polarons in the form of intense dd+phonon excitations, and a decrease of the LO3-mode electron-phonon coupling when going from insulating to highly conducting STO single crystals and heterostructures. Both results are attributed to the dynamic screening of the large polaron self-induced polarization, showing that the low-temperature physics of STO and STO-based 2DEGs is dominated by large polaron quasiparticles.

7.
Nanomaterials (Basel) ; 10(4)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344792

ABSTRACT

Epitaxial films of high critical temperature ( T c ) cuprate superconductors preserve their transport properties even when their thickness is reduced to a few nanometers. However, when approaching the single crystalline unit cell (u.c.) of thickness, T c decreases and eventually, superconductivity is lost. Strain originating from the mismatch with the substrate, electronic reconstruction at the interface and alteration of the chemical composition and of doping can be the cause of such changes. Here, we use resonant inelastic x-ray scattering at the Cu L 3 edge to study the crystal field and spin excitations of NdBa 2 Cu 3 O 7 - x ultrathin films grown on SrTiO 3 , comparing 1, 2 and 80 u.c.-thick samples. We find that even at extremely low thicknesses, the strength of the in-plane superexchange interaction is mostly preserved, with just a slight decrease in the 1 u.c. with respect to the 80 u.c.-thick sample. We also observe spectroscopic signatures for a decrease of the hole-doping at low thickness, consistent with the expansion of the c-axis lattice parameter and oxygen deficiency in the chains of the first unit cell, determined by high-resolution transmission microscopy and x-ray diffraction.

8.
Phys Rev Lett ; 123(2): 027001, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386544

ABSTRACT

We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa_{2}Cu_{3}O_{6} and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.

9.
Phys Rev Lett ; 115(15): 157401, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26550751

ABSTRACT

By using soft-x-ray linear and magnetic dichroism on La_{0.825}Sr_{0.175}MnO_{3}/PbZr_{0.2}Ti_{0.8}O_{3} ferromagnetic-ferroelectric heterostructures we demonstrate a nonvolatile modulation of the Mn 3d orbital anisotropy and magnetic moment. X-ray absorption spectroscopy at the Mn L_{2,3} edges shows that the ferroelectric polarization direction modifies the carrier density, the spin moment, and the orbital splitting of t_{2g} and e_{g} Mn 3d states. These results are consistent with polar distortions of the oxygen octahedra surrounding the Mn ions induced by the switching of the ferroelectric polarization.

SELECTION OF CITATIONS
SEARCH DETAIL
...