Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(11): 3055-3058, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262279

ABSTRACT

Frequency combs present a unique tool for high-precision and rapid molecular spectroscopy. Difference frequency generation (DFG) of near-infrared sources is a common approach to generate passively stabilized mid-infrared combs. However, only little attention has been paid so far to precisely measure the coherence properties of such sources. Here, we investigate these using a Raman-soliton based DFG source driven by an Yb:fiber frequency comb. A heterodyne beat between the second harmonic of the phase-locked DFG comb near 4 µm and a 2 µm Tm:fiber frequency comb locked to the same optical reference is performed. Using this method, we measure the relative phase noise power spectral density of both combs. This results in a sub-Hz relative linewidth between the DFG comb and the Tm:fiber comb. We also introduce a new pump/seed delay locking mechanism based on interferometry for long-term stable intensity noise suppression.

2.
Opt Lett ; 47(4): 822-825, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35167534

ABSTRACT

We demonstrate a 41.6 MHz, 1.3 ps, 140 pJ Ho:fiber oscillator using a nonlinear amplifying loop mirror (NALM) as saturable absorber. The oscillator is constructed entirely with polarization-maintaining (PM) fibers, is tunable with a center wavelength between 2035 nm and 2075 nm, and can be synchronized to an external RF reference. For our application of Ho:YLF amplifier seeding for dielectric electron acceleration, the laser is tuned to 2050 nm and synchronized to a stable RF reference with 45 fs rms timing jitter in the integration interval [10 Hz, 1 MHz]. We show long term synchronized operation and characterize the relative intensity noise (RIN) and timing jitter of the oscillator for two different Tm-fiber pump lasers.

3.
Opt Express ; 28(13): 18946-18968, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672183

ABSTRACT

We present a flexible all-polarization-maintaining (PM) mode-locked ytterbium (Yb):fiber laser based on a nonlinear amplifying loop mirror (NALM). In addition to providing detailed design considerations, we discuss the different operation regimes accessible by this versatile laser architecture and experimentally analyze five representative mode-locking states. These five states were obtained in a 78-MHz configuration at different intracavity group delay dispersion (GDD) values ranging from anomalous (-0.035 ps2) to normal (+0.015 ps2). We put a particular focus on the characterization of the intensity noise as well as the free-running linewidth of the carrier-envelope-offset (CEO) frequency as a function of the different operation regimes. We observe that operation points far from the spontaneous emission peak of Yb (∼1030 nm) and close to zero intracavity dispersion can be found, where the influence of pump noise is strongly suppressed. For such an operation point, we show that a CEO linewidth of less than 10-kHz at 1 s integration can be obtained without any active stabilization.

4.
Sci Rep ; 6: 38674, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929049

ABSTRACT

Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5-10 ns), pulse energy (up to 10 µJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 µm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...