Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Biomed Res Int ; 2024: 9625043, 2024.
Article in English | MEDLINE | ID: mdl-38807916

ABSTRACT

Epigenetic alterations have been observed in many hematological malignancies, including acute myeloid leukemia (AML). Many of these alterations result from mutations in DNA methyl transferase (DNMT) enzymes, disabling them to methylate target genes in a proper way. In this case-control study, we investigated the association between R882H mutation in DNMT3A gene and DDX43 gene methylation in patients with AML. 47 AML patients and 6 controls were included in this study. After DNA extraction, amplification refractory mutation system (ARMS)-PCR was used to evaluate R882H mutations in DNMT3A gene. The high-resolution melting (HRM) method was used to determine the methylation changes of the DDX43 gene promoter. R882H mutation was only found in 10.6% (5 out of 47) of AML patients. The frequency of DDX43 gene methylation was significantly higher in patients without R882H mutations compared to patients with R882H mutations (P < 0.05). The DNMT3A R882H mutation is typically present in a minority of AML patients. Nevertheless, this mutation is associated with a reduced frequency of methylation in the DDX43 promoter region.


Subject(s)
DEAD-box RNA Helicases , DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , DNA Methyltransferase 3A , Leukemia, Myeloid, Acute , Mutation , Promoter Regions, Genetic , Humans , Leukemia, Myeloid, Acute/genetics , DNA Methyltransferase 3A/genetics , Promoter Regions, Genetic/genetics , DEAD-box RNA Helicases/genetics , DNA Methylation/genetics , Male , DNA (Cytosine-5-)-Methyltransferases/genetics , Female , Middle Aged , Adult , Mutation/genetics , Aged , Case-Control Studies , Neoplasm Proteins
2.
Mol Biotechnol ; 2023 Nov 19.
Article in English | MEDLINE | ID: mdl-37980693

ABSTRACT

Generating animal models can explore the role of new candidate genes in causing diseases and the pathogenicity of a specific mutation in the underlying genes. These animals can be used to identify new pharmaceutical or genetic therapeutic methods. In the present experiment, we developed a rpe65a knock out (KO) zebrafish as a retinitis pigmentosa (RP) disease model. Using the CRISPR/Cas9 system, the rpe65a gene was KO in zebrafish. Two specific single-guide RNAs (sgRNAs) were designed for the zebrafish rpe65a gene. SgRNAs were cloned into the DR274 plasmid and synthesized using in vitro transcription method. The efficiency of Ribonucleoprotein (synthesized sgRNA and recombinant Cas9) was evaluated by in vitro digestion experiment. Ribonucleoprotein complexes were microinjected into one to four-celled eggs of the TU zebrafish strain. The effectiveness of sgRNAs in KO the target gene was determined using the Heteroduplex mobility assay (HMA) and Sanger sequencing. Online software was used to determine the percent of mosaicism in the sequenced samples. By examining the sequences of the larvae that showed a mobility shift in the HMA method, the presence of indels in the binding region of sgRNAs was confirmed, so the zebrafish model for RP disease established. Zebrafish is an ideal animal model for the functional study of various diseases involving different genes and mutations and used for evaluating different therapeutic approaches in human diseases. This study presents the production of rpe65a gene KO zebrafish models using CRISPR/Cas9 technology. This model can be used in RP pathophysiology studies and preclinical gene therapy experiments.

3.
Curr Microbiol ; 80(8): 248, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37341794

ABSTRACT

MicroRNAs, or miRNAs, may involve in coagulation and inflammation pathways caused by severe Coronavirus disease (COVID-19). Accordingly, this attempt was made to explore the behavior of peripheral blood mononuclear cells (PBMCs) miRNAs as effective biomarkers to diagnose COVID-19 patients with normal and abnormal coagulation indices. We selected the targeted miRNAs (miR-19a-3p, miR-223-3p, miR-143-5p, miR-494-3p and miR-301a-5p) according to previous reports, whose PBMC levels were then determined by real-time PCR. Receiver operating characteristic (ROC) curve was obtained to clarify the diagnostic potency of studied miRNAs. The differentially expressed miRNA profiles and corresponding biological activities were predicted in accordance with bioinformatics data. Targeted miRNAs' expression profiles displayed a significant difference between COVID-19 subjects with normal and abnormal coagulation indices. Moreover, the average miR-223-3p level expressed in COVID-19 cases with normal coagulation indices was significantly lower than that in healthy controls. Based on data from ROC analysis, miR-223-3p and miR-494-3p are promising biomarkers to distinguish the COVID-19 cases with normal or abnormal coagulation indices. Bioinformatics data highlighted the prominent role of selected miRNAs in the inflammation and TGF-beta signaling pathway. The differences existed in the expression profiles of selected miRNAs between the groups introduced miR-494-3p and miR-223-3p as potent biomarkers to prognosis the incidence of COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Humans , MicroRNAs/genetics , Leukocytes, Mononuclear , Diagnosis, Differential , Gene Expression Profiling , COVID-19/diagnosis , Biomarkers , Inflammation , COVID-19 Testing
4.
Pathol Res Pract ; 248: 154618, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331185

ABSTRACT

Globally, prostate cancer (PC) is leading cause of cancer-related mortality in men worldwide. Despite significant advances in the treatment and management of this disease, the cure rates for PC remains low, largely due to late detection. PC detection is mostly reliant on prostate-specific antigen (PSA) and digital rectal examination (DRE); however, due to the low positive predictive value of current diagnostics, there is an urgent need to identify new accurate biomarkers. Recent studies support the biological role of microRNAs (miRNAs) in the initiation and progression of PC, as well as their potential as novel biomarkers for patients' diagnosis, prognosis, and disease relapse. In the advanced stages, cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant part of circulating vesicles and cause detectable changes in the plasma vesicular miRNA profile. Recent computational model for the identification of miRNA biomarkers discussed. In addition, accumulating evidence indicates that miRNAs can be utilized to target PC cells. In this article, the current understanding of the role of microRNAs and exosomes in the pathogenesis and their significance in PC prognosis, early diagnosis, chemoresistance, and treatment are reviewed.


Subject(s)
MicroRNAs , Prostatic Neoplasms , Male , Humans , MicroRNAs/genetics , Biomarkers, Tumor/genetics , Early Detection of Cancer , Neoplasm Recurrence, Local , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prognosis
5.
Curr Cancer Drug Targets ; 23(11): 868-878, 2023.
Article in English | MEDLINE | ID: mdl-37226789

ABSTRACT

Natural killer (NK) cell behavior and function are controlled by a balance between negative or positive signals generated by an extensive array of activating and inhibiting receptors, including killer cell immunoglobulin-like receptor (KIR) proteins, main components of the innate immune system that contribute to initial responses against viral infected-transformed cells through generation of the release of cytokines and cytotoxicity. What is certain is that KIRs are genetically polymorphic and the extent of KIRs diversity within the individuals may have the potential outcomes for hematopoietic stem cell transplantation (HSCT). In this regard, recent studies suggest that KIR is as imperative as its ligand (HLA) in stem cell transplantation for malignant diseases. However, unlike HLA epitope mismatches, which are well-known causes of NK alloreactivity, a complete understanding of KIR genes' role in HSCT remains unclear. Because of genetic variability in KIR gene content, allelic polymorphism, and cell-surface expression among individuals, an appropriate selection of donors based on HLA and KIR profiles is crucial to improve outcomes of stem cell transplantation. In addition, the impact of the KIR/HLA interaction on HSCT outcomes needs to be investigated more comprehensively. The present work aimed to review the NK cell regeneration, KIR gene polymorphisms, and KIRligand binding on outcomes in hematologic malignancies following haploidentical stem cell transplantation. Comprehensive data gathered from the literature can provide new insight into the significance of KIR matching status in transplantations.


Subject(s)
Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Humans , Ligands , HLA Antigens/genetics , Neoplasm Recurrence, Local , Receptors, KIR/genetics , Receptors, KIR/metabolism , Polymorphism, Genetic , Histocompatibility Antigens , Stem Cell Transplantation , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy
6.
J Psychiatr Res ; 157: 223-238, 2023 01.
Article in English | MEDLINE | ID: mdl-36508934

ABSTRACT

Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder, in which the patient endures intrusive thoughts or is compelled to perform repetitive or ritualized actions. Many cases of OCD are considered to be familial or heritable in nature. It has been shown that a variety of internal and external risk factors are involved in the pathogenesis of OCD. Among the internal factors, genetic modifications play a critical role in the pathophysiological process. Despite many investigations performed to determine the candidate genes, the precise genetic factors involved in the disease remain largely undetermined. The present review summarizes the single nucleotide polymorphisms that have been proposed to be associated with OCD symptoms, early onset disease, neuroimaging results, and response to therapy. This information could help us to draw connections between genetics and OCD symptoms, better characterize OCD in individual patients, understand OCD prognosis, and design more targeted personalized treatment approaches.


Subject(s)
Obsessive-Compulsive Disorder , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Obsessive-Compulsive Disorder/therapy , Obsessive-Compulsive Disorder/drug therapy
7.
Immunol Med ; 46(2): 69-76, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36308011

ABSTRACT

Programmed cell death 1 (PD-1) is an immune checkpoint and has been reported to be associated with several autoimmune diseases. We aimed to investigate the association between human PD-1 gene (PDCD1) polymorphisms and multiple sclerosis (MS). This case-control study was conducted on 229 MS patients and 246 healthy controls. Genotyping of rs36084323 (PD-1.1 G/A), rs11568821 (PD-1.3 G/A) and rs2227981 (PD-1.5 C/T) polymorphisms was performed by PCR-RFLP technique. The frequency difference of PD-1.1 genotypes and alleles (-536 G/A) between patients and healthy controls was not significant. Regarding PD-1.3, the AA + AG genotype was found to be relatively higher in the control group. Concerning PD-1.5 (+7785 C/T), the frequency of T allele carriers (TT + CT) was relatively higher in MS patients, which was marginally insignificant (p = .07). PD-1 gene polymorphisms may be associated with MS; however, accurate conclusions require further studies with a larger number of samples.


Subject(s)
Multiple Sclerosis , Polymorphism, Single Nucleotide , Humans , Multiple Sclerosis/genetics , Programmed Cell Death 1 Receptor/genetics , Case-Control Studies , Genetic Predisposition to Disease
8.
Diagnostics (Basel) ; 12(12)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36553216

ABSTRACT

Long non-coding ribonucleic acids (LncRNAs) are recently known for their role in regulating gene expression and the development of cancer. Controversial results indicate a correlation between the tissue expression of LncRNA and LncRNA content of extracellular vesicles. The present study aimed to evaluate the expression of different LncRNAs in non-small cell lung cancer (NSCLC) patients in tumor tissue, adjacent non-cancerous tissue (ANCT), and exosome-mediated lncRNA. Tumor and ANCT, as well as serum samples of 168 patient with NSCLC, were collected. The GHSROS, HNF1A-AS1, HOTAIR, HMlincRNA717, and LINCRNA-p21 relative expressions in tumor tissue, ANCT, and serum exosomes were evaluated in NSCLC patients. Among 168 NSCLC samples, the expressions of GHSROS (REx = 3.64, p = 0.028), HNF1A-AS1 (REx = 2.97, p = 0.041), and HOTAIR (REx = 2.9, p = 0.0389) were upregulated, and the expressions of HMlincRNA717 (REx = −4.56, p = 0.0012) and LINCRNA-p21 (REx = −5.14, p = 0.00334) were downregulated in tumor tissue in contrast to ANCT. Moreover, similar statistical differences were seen in the exosome-derived RNA of tumor tissues in contrast to ANCT samples. A panel of the five lncRNAs demonstrated that the area under the curve (AUC) for exosome and tumor was 0.937 (standard error: 0.012, p value < 0.0001). LncRNAs GHSROS, HNF1A-AS1, and HOTAIR showed high expression in tumor tissue and exosome content in NSCLC, and a panel that consisted of all five lncRNAs improved diagnosis of NSCLC.

9.
Adv Exp Med Biol ; 1401: 97-162, 2022.
Article in English | MEDLINE | ID: mdl-35781219

ABSTRACT

Autophagy is known as a conserved self-eating mechanism that contributes to cells to degrade different intracellular components (i.e., macromolecular complexes, aggregated proteins, soluble proteins, organelles, and foreign bodies). Autophagy needs formation of a double-membrane structure, which is composed of the sequestered cytoplasmic contents, called autophagosome. There are a variety of internal and external factors involved in initiation and progression of autophagy process. Viruses as external factors are one of the particles that could be associated with different stages of this process. Viruses exert their functions via activation and/or inhibition of a wide range of cellular and molecular targets, which are involved in autophagy process. Besides viruses, a variety of cellular and molecular pathways that are activated and inhibited by several factors (e.g., genetics, epigenetics, and environment factors) are related to beginning and developing of autophagy mechanism. Exosomes and microRNAs have been emerged as novel and effective players anticipated in various stages of autophagy. More knowledge in these pathways and identification of accurate roles of them could help to provide better therapeutic approaches in several diseases such as cancer. We highlighted the roles of viruses, exosomes, and microRNAs in the autophagy processes.


Subject(s)
Exosomes , MicroRNAs , Viruses , Exosomes/metabolism , MicroRNAs/metabolism , Autophagy/physiology , Autophagosomes/metabolism
10.
Fetal Pediatr Pathol ; 41(1): 141-148, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32449406

ABSTRACT

Background: Steroid-5α-reductase-2 (SRD5A2) and 17ß-hydroxysteroid dehydrogenase type 3 (17ß-HSD3) enzyme deficiencies are frequent causes of 46, XY disorder of sex development (46, XY DSD), where an infant with 46, XY has a female phenotype. We assessed the hydroxy-steroid-17ß-dehydrogenase-3 (HSD17B3)and SRD5A2 genes in twenty Iranian phenotypic females with 46,XY DSD. Materials and methods: All exons in HSD17B3 and SRD5A2 genes were subjected to PCR amplification followed by sequencing. Results: Of 20 identified 46, XY DSD patients, one had a homozygous missense 17ß-HSD3 mutation Ser65Leu (c.194C > T). We found 1 SRD5A2 novel homozygous missense mutation of Tyr242Asp (c.891T > G) in exon 5, which in-silico analyses revealed that this mutation may have deleterious impact on ligand binding site of SRD5A2 protein. Three other individuals harbored 17ß-HSD3 deficiencies without identified mutations. Conclusions: SRD5A2 and 17ß-HSD3 mutations are found in 10% of 46, XY DSD Iranian patients.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase , Disorder of Sex Development, 46,XY , Membrane Proteins , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Disorder of Sex Development, 46,XY/genetics , Female , Homozygote , Humans , Infant , Iran , Membrane Proteins/genetics , Mutation
11.
Comb Chem High Throughput Screen ; 25(2): 211-228, 2022.
Article in English | MEDLINE | ID: mdl-33390101

ABSTRACT

The precise and exquisite architecture of the retina is directly related to vision. Therefore, any mechanisms associated with disruption of retinal structure could affect the quality of vision. A large number of studies indicated that several cellular and molecular processes are involved in retina pathogenesis. Among different risk factors reported as important players in retina diseases, deregulation of epigenetic contributors has critical roles in the pathogenesis of these diseases. MicroRNAs (miRNAs) are a type of small non-coding RNAs that are involved in various signaling pathways involved in retina diseases. These molecules exert their function by targeting a sequence of cellular and molecular signals. Long-non coding RNAs (lncRNAs) and circular RNAs are other non-coding RNAs, which can exert their regulatory roles via miRNA sponging. In this regard, it has been showed that miRNA sponging could modulate a variety of pathways in retinal diseases. Besides miRNAs, exosomes are other players in the pathogenesis of retinal diseases. Exosomes are biological vectors that could carry their cargos to recipient cells. The cargos of exosomes (i.e., proteins, lncRNAs, miRNAs, and fragments of DNA) change behaviors of host cells. Here, we summarized the roles of miRNAs, miRNAs sponging and exosomes in the pathogenesis of retinal diseases.


Subject(s)
Exosomes , MicroRNAs , RNA, Long Noncoding , Retinal Diseases , Exosomes/genetics , Exosomes/metabolism , Exosomes/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Retinal Diseases/diagnosis , Retinal Diseases/genetics , Retinal Diseases/metabolism , Signal Transduction
12.
J Oncol ; 2021: 3408937, 2021.
Article in English | MEDLINE | ID: mdl-34721577

ABSTRACT

Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease. Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.

13.
Sci Rep ; 11(1): 19332, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588515

ABSTRACT

Inherited retinal dystrophies (IRDs) constitute one of the most heterogeneous groups of Mendelian human disorders. Using autozygome-guided next-generation sequencing methods in 17 consanguineous pedigrees of Iranian descent with isolated or syndromic IRD, we identified 17 distinct genomic variants in 11 previously-reported disease genes. Consistent with a recessive inheritance pattern, as suggested by pedigrees, variants discovered in our study were exclusively bi-allelic and mostly in a homozygous state (in 15 families out of 17, or 88%). Out of the 17 variants identified, 5 (29%) were never reported before. Interestingly, two mutations (GUCY2D:c.564dup, p.Ala189ArgfsTer130 and TULP1:c.1199G > A, p.Arg400Gln) were also identified in four separate pedigrees (two pedigrees each). In addition to expanding the mutational spectrum of IRDs, our findings confirm that the traditional practice of endogamy in the Iranian population is a prime cause for the appearance of IRDs.


Subject(s)
Consanguinity , Eye Diseases, Hereditary/genetics , Retinal Dystrophies/genetics , DNA Mutational Analysis , Eye Diseases, Hereditary/diagnosis , Eye Proteins/genetics , Female , Gene Frequency , Guanylate Cyclase/genetics , Humans , Iran , Male , Mutation , Pedigree , Receptors, Cell Surface/genetics , Retinal Dystrophies/diagnosis , Exome Sequencing
14.
Adv Exp Med Biol ; 1327: 3-22, 2021.
Article in English | MEDLINE | ID: mdl-34279825

ABSTRACT

In the last two decades, the world has experienced outbreaks of three major coronaviruses with high morbidity and mortality rates. The most recent of these started in the form of an unusual viral pneumonia in Wuhan, China, and now the world is facing a serious pandemic. This new disease has been called COVID-19 and is caused by the SARS-CoV-2 virus. Understanding the specific genetic and phenotypic structure of SARS-CoV-2 in COVID-19 pathogenesis is vital in finding appropriate drugs and vaccines. With this in mind, this review sheds light on the virology, genetics, immune-responses, and mechanism of action of this virus.


Subject(s)
COVID-19 , Pneumonia, Viral , China , Humans , Immunity , SARS-CoV-2
15.
Curr Pharm Des ; 27(28): 3161-3169, 2021.
Article in English | MEDLINE | ID: mdl-33902409

ABSTRACT

DNA damage usually happens in all cell types, which may originate from endogenous sources (i.e., DNA replication errors) or be emanated from radiations or chemicals. These damages range from changes in few nucleotides to significant structural abnormalities on chromosomes and, if not repaired, could disturb the cellular homeostasis or cause cell death. As the most significant response to DNA damage, DNA repair provides biological pathways by which DNA damages are corrected and returned into their natural circumstance. However, an aberration in the DNA repair mechanisms may result in genomic and chromosomal instability and the accumulation of mutations. The activation of oncogenes and/or inactivation of tumor suppressor genes is a serious consequence of genomic and chromosomal instability and may bring the cells into a cancerous phenotype. Therefore, genomic and chromosomal instability is usually considered a crucial factor in carcinogenesis and an important hallmark of various human malignancies. In the present study, we review our current understanding of the most updated mechanisms underlying genomic instability in cancer and discuss the potential promises of these mechanisms in finding new targets for the treatment of cancer.


Subject(s)
Genomic Instability , Neoplasms , Chromosomal Instability/genetics , DNA Damage , DNA Repair/genetics , Humans , Neoplasms/drug therapy , Neoplasms/genetics
16.
Curr Drug Targets ; 22(13): 1524-1535, 2021.
Article in English | MEDLINE | ID: mdl-33593257

ABSTRACT

Cancer-associated fibroblasts (CAFs) are senescent fibroblasts in tumor nest, which trigger a signaling center to remodel a desmoplastic tumor niche. CAF's functions in cancer are closely similar to myofibroblasts during the wound healing process. They can produce cytokines, enzymes, and protein- or RNA-containing exosomes to alter the function of surrounding cells. Non-- coding RNAs, including microRNAs and long non-coding RNAs, modulate pathologic mechanisms in cancer. Dysregulation of these RNAs influences the formation and function of CAFs. Furthermore, it has been demonstrated that CAFs, by releasing non-coding RNAs-containing exosomes, affect the tumor cells' behavior. CAFs also secrete mediators such as chemokines to alter the expression of non-coding RNAs in the tumor microenvironment. This study aimed to discuss the role of non-coding RNAs in CAF development in cancer. Additionally, we have shed light on the therapeutic approaches to develop the strategies based on the alteration of non-coding RNAs in cancer.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , RNA, Untranslated , Cancer-Associated Fibroblasts/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/genetics , RNA, Untranslated/physiology
17.
Nat Commun ; 12(1): 518, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483490

ABSTRACT

Homozygosity mapping is a powerful method for identifying mutations in patients with recessive conditions, especially in consanguineous families or isolated populations. Historically, it has been used in conjunction with genotypes from highly polymorphic markers, such as DNA microsatellites or common SNPs. Traditional software performs rather poorly with data from Whole Exome Sequencing (WES) and Whole Genome Sequencing (WGS), which are now extensively used in medical genetics. We develop AutoMap, a tool that is both web-based or downloadable, to allow performing homozygosity mapping directly on VCF (Variant Call Format) calls from WES or WGS projects. Following a training step on WES data from 26 consanguineous families and a validation procedure on a matched cohort, our method shows higher overall performances when compared with eight existing tools. Most importantly, when tested on real cases with negative molecular diagnosis from an internal set, AutoMap detects three gene-disease and multiple variant-disease associations that were previously unrecognized, projecting clear benefits for both molecular diagnosis and research activities in medical genetics.


Subject(s)
Chromosome Mapping/methods , Computational Biology/methods , Genome, Human/genetics , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , Software , Genetic Predisposition to Disease/genetics , Genotype , Homozygote , Humans , Internet , Mutation , Reproducibility of Results , Exome Sequencing/methods
18.
Fetal Pediatr Pathol ; 40(5): 442-454, 2021 Oct.
Article in English | MEDLINE | ID: mdl-31984822

ABSTRACT

BACKGROUND: Cleidocranial dysplasia (CCD) is a genetic disorder with an autosomal dominant inheritance pattern. CCD characterized by abnormal clavicles, patent sutures and fontenelles, supernumerary teeth and short stature. Approximately 60-70% of CCD patients have mutations in the RUNX2 gene. The RUNX2 gene is an essential transcription factor for chondrocyte maturation, osteoblast differentiation and bone formation. Runx2 regulates mesenchymal cell proliferation in sutures and suture closure by inducing the signaling pathways of the genes of Fgf, Pthlh, hedgehog and Wnt. Material and Methods: We summarized molecular genetics aspects of CCD. Result: Approximately 94% of CCD patients have dental anomalies, the most common of which are supernumerary tooth. Dental anomalies are not determined solely by gene mutations of RUNX2, but are also affected by modifier genes, environmental factors, epigenetic factors and copy number variations. Conclusion: a definite diagnosis of CCD should include the patient's clinical history, symptoms and signs, as well as genetic analyses.


Subject(s)
Cleidocranial Dysplasia , Core Binding Factor Alpha 1 Subunit/genetics , Cleidocranial Dysplasia/genetics , DNA Copy Number Variations , Humans , Mutation , Transcription Factors/genetics
19.
Int J Neurosci ; 131(4): 370-389, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32241218

ABSTRACT

Background and purpose: Duchenne muscular dystrophy (DMD), a lethal X-linked recessive muscle dystrophy, is resulted in by different mutations including mostly frame-shifting gross deletions and duplications and rarely point mutations in DMD gene. Increasing weakness, progressive loss of skeletal muscle mass, and later-onset cardiomyopathy are serious clinical symptoms which ultimately lead to cardiac and respiratory failure, and premature death in DMD patients by age of 30. DMD is a prevalent genetic disorder and considers as an interesting target for gene therapy approaches. Massive gene size and existence of enormous number of muscle tissues are terrific hindrance against DMD treatments, nevertheless enormous efforts have been executed in the fields of gene replacement therapy, gene editing strategies, cell-based treatments, and small drug medications. Hot spot exons skipping and suppression of premature stop codons are the most interesting treatments for restoring functional DMD product, dystrophin protein. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) systems are the most interesting genome editing platforms that are able to restore open reading frame of DMD gene. CRISPR-Cas9 and CRISPR-Cpf1 are two main genome editing sub-types that successfully used in mdx mice.Conclusions: This review aims to present recent progresses and future prospects over three main DMD therapeutic subgroups including gene therapy, cell therapy, and pharmacological therapy.


Subject(s)
Muscular Dystrophy, Duchenne/therapy , Animals , Cell- and Tissue-Based Therapy , Disease Models, Animal , Genetic Therapy , Humans , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology
20.
Prog Biophys Mol Biol ; 161: 17-26, 2021 05.
Article in English | MEDLINE | ID: mdl-33259833

ABSTRACT

Cancer is one of the healthcare problems that affect many communities around the world. Many factors contribute to cancer development. Besides, these factors are counted as the main impediment in cancer immunotherapy. Myeloid-derived suppressor cells (MDSCs) are one of these impediments. MDSCs inhibit the immune responses through various mechanisms such as inhibitory cytokine release and nitric oxide metabolite production. Several factors are involved in forming these cells, including tumor secreted cytokine and chemokines, transcription factors, and non-coding RNA. In the meantime, micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the vital gene regulatory elements that affect gene expression. In this study, we are going to discuss the role of miRNAs and lncRNAs in MDSCs development in a cancer situation. It is hoped that miRNA and lncRNAs targeting may prevent the growth and development of these inhibitory cells in the cancer environment.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Tumor Microenvironment , Humans , Immunotherapy , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...