Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 10(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921391

ABSTRACT

An investigation into oomycete diversity in rice paddies of Fars Province in Iran led to the identification of two new Pythium sensu lato (s.l.) species as Globisporangium izadpanahii sp. nov. and Pythium banihashemianum sp. nov. The identification was based on morphological and physiological features as well as on the phylogenetic analysis of nuclear (ITS and ßtub) and mitochondrial (cox1 and cox2) loci using Bayesian inference and Maximum Likelihood. The present paper formally describes these two new species and defines their phylogenetic relationships with other congeneric species. According to multiple gene genealogy analysis, G. izadpanahii sp. nov. was grouped with other species of Globisporangium (formerly, clade G of Pythium s.l.) and was closely related to both G. nagaii and the recently described G. coniferarum. The second species, designated P. banihashemianum sp. nov., was grouped with other species of Pythium sensu stricto (formerly, clade B of Pythium s.l.) and, according to the phylogenetic analysis, shared an ancestor with P. plurisporium. The production of globose hyphal swellings was a major characteristic of G. izadpanahii sp. nov., which did not produce vesicles and zoospores. In pathogenicity tests on rice seedlings, P. banihashemianum sp. nov. isolates were highly pathogenic and caused severe root and crown rot, while G. izadpanahii sp. nov. isolates were not pathogenic.

2.
J Fungi (Basel) ; 8(4)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35448595

ABSTRACT

Infections by Fusarium and Fusarium-like species on cacti and other succulent plants cause the syndrome known as Fusarium dry rot and soft rot. There are only few records of Fusarium species as pathogens of cacti and other succulent plants from Iran. The objective of this study was the identification and characterization of fusarioid species recovered from ornamental succulents in Shiraz County, Iran. Three fusarioid species, including F. oxysporum, F. proliferatum, and Neocosmospora falciformis (formerly F. falciforme), were recovered from 29 diverse species of cacti and other succulents with symptoms of Fusarium dry rot and soft rot. The three fungal species were identified on the basis of morphological characters and the phylogenetic analysis of the translation elongation factor1-α (tef1) nuclear gene. The F. oxysporum isolates were identified as F. oxysporum f. sp. opuntiarum. The pathogenicity of the three fusarioid species was tested on a range of economically important ornamental succulents, mostly in the Cactaceae family. The three species showed a broad host spectrum and induced different types of symptoms on inoculated plants, including soft and dry rot, chlorosis, necrotic spots, wilt, drying, root and crown rot. This is the first report of N. falciformis as a pathogen of succulent plants worldwide.

3.
Mycologia ; 111(2): 274-290, 2019.
Article in English | MEDLINE | ID: mdl-30908119

ABSTRACT

In an investigation of the oomyceteous flora in rice paddy fields of Fars Province, Iran, three new Pythium species were isolated and identified on the basis of morphological features and molecular phylogenetic characteristics. Their unique morphological traits, including sexual and asexual structural characteristics (i.e., sporangial type; oogonial type and ornamentations; type and the number of antheridia per oogonium; and oospore type), cardinal temperatures, and colony morphology on various media, separated them from other known species. Using nuclear and mitochondrial genes, each species formed discrete lineages in phylogenetic analyses based on Bayesian inference and maximum likelihood methods. This paper describes these three new Pythium species, P. heteroogonium, P. longipapillum, and P. oryzicollum, and compares them with their related taxa via morphological features and molecular characteristics. Pathogenicity tests revealed the ability of P. oryzicollum to cause pre- and post-emergence damping-off, seed rot, crown rot, and reduced growth rate on rice.


Subject(s)
Microscopy , Phylogeny , Pythium/classification , Pythium/isolation & purification , Soil Microbiology , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Iran , Microbiological Techniques , Oryza/growth & development , Polymerase Chain Reaction , Pythium/genetics , Pythium/growth & development , RNA, Ribosomal, 5.8S/genetics , Sequence Analysis, DNA , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...