Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Mini Rev Med Chem ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685805

ABSTRACT

Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties. However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin's effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.

2.
Heliyon ; 10(7): e28167, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560206

ABSTRACT

Cancer remains a challenging disease worldwide, necessitating innovative approaches to better comprehend its underlying molecular mechanisms and devise effective therapeutic strategies. Over the past decade, microRNAs (miRNAs) have emerged as crucial players in cancer progression due to their regulatory roles in various cellular processes. Moreover, the involvement of unwanted soluble receptors has gained increasing attention because they contribute to tumorigenesis or drug resistance by disrupting normal signaling pathways and neutralizing ligands. This comprehensive review explores the intricate interplay between miRNAs and unwanted-soluble receptors in the context of cancer biology. This study provides an analysis of the regulatory interactions between miRNAs and these receptors, elucidating how miRNAs can either suppress or enhance their expression. MiRNAs can directly target receptor transcripts, thereby regulating soluble receptor levels. They also modulate the proteolytic cleavage of membrane-bound receptors into soluble forms by targeting sheddases, such as ADAMs and MMPs. Furthermore, the review delves into the therapeutic potential of manipulating miRNAs to modulate unwanted soluble receptors. Various strategies, including synthetic miRNA mimics or anti-miRNAs, hold promise for restoring or inhibiting miRNA function to counteract aberrant receptor activity. Moreover, exploring miRNA-based delivery systems may provide targeted and precise therapies that minimizing off-target effects. In conclusion, this review sheds light on the intricate regulatory networks involving miRNAs and unwanted soluble receptors in cancer biology thereby uncovering novel therapeutic targets, and paving the way for developing innovative anti-cancer therapies.

3.
Iran J Basic Med Sci ; 26(10): 1107-1119, 2023.
Article in English | MEDLINE | ID: mdl-37736505

ABSTRACT

One of the most challenging problems of the current treatments of neurodegenerative diseases is related to the permeation and access of most therapeutic agents to the central nervous system (CNS), prevented by the blood-brain barrier (BBB). Recently, intranasal (IN) delivery has opened new prospects because it directly delivers drugs for neurological diseases into the brain via the olfactory route. Recently, PLGA-based nanocarriers have attracted a lot of interest for IN delivery of drugs. This review gathered clear and concise statements of the recent progress of the various developed PLGA-based nanocarriers for IN drug delivery in brain diseases including Alzheimer's, Parkinson's, brain tumors, ischemia, epilepsy, depression, and schizophrenia. Subsequently, future perspectives and challenges of PLGA-based IN administration are discussed briefly.

4.
Environ Res ; 234: 116572, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37429398

ABSTRACT

Statins are the most widely used pharmacological agents for reducing blood cholesterol levels and treating atherosclerotic cardiovascular diseases. Most of the statins' derivatives have been limited by water solubility, bioavailability, and oral absorption, which has led to adverse effects on several organs, especially at high doses. As an approach to reducing statin intolerance, achieving a stable formulation with improved efficacy and bioavailability at low doses has been suggested. Nanotechnology-based formulations may provide a therapeutic benefit over traditional formulations in terms of potency and biosafety. Nanocarriers can provide tailored delivery platforms for statins, thereby enhancing the localized biological effects and lowering the risk of undesired side effects while boosting statin's therapeutic index. Furthermore, tailored nanoparticles can deliver the active cargo to the desired site, which culminates in reducing off-targeting and toxicity. Nanomedicine could also provide opportunities for therapeutic methods by personalized medicine. This review delves into the existing data on the potential improvement of statin therapy using nano-formulations.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , Nanomedicine , Nanotechnology
5.
Iran J Basic Med Sci ; 26(4): 388-394, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37009014

ABSTRACT

Objectives: Known as natural nanovesicles, exosomes have attracted increased attention as biocompatible carriers throughout recent years, which can provide appropriate sources for incorporating and transferring drugs to desired cells in order to improve their effectiveness and safety. Materials and Methods: This study implicates the isolation of mesenchymal stem cells from adipocyte tissue (ADSCs) to acquire a proper amount of exosomes for drug delivery. As the exosomes were separated by ultracentrifugation, SN38 was entrapped into ADSCs-derived exosomes through the combination method of incubation, freeze-thaw, and surfactant treatment (SN38/Exo). Then, SN38/Exo was conjugated with anti-MUC1 aptamer (SN38/Exo-Apt), and its targeting ability and cytotoxicity towards cancer cells were investigated. Results: Encapsulation efficiency of SN38 into exosomes (58%) was significantly increased using our novel combination method. Furthermore, the in vitro results were indicative of the great cellular uptake of SN38/Exo-Apt and its significant cytotoxicity on Mucin 1 overexpressing cells (C26 cancer cells) without noticeable cytotoxicity on normal cells (CHO cells). Conclusion: The results propose that our approach developed an efficient method for loading SN38 as a hydrophobic drug into exosomes and decorating them with MUC1 aptamer against Mucin 1 overexpressing cells. So, SN38/Exo-Apt could be considered a great platform in the future for the therapy of colorectal cancer.

6.
Iran J Basic Med Sci ; 26(2): 128-136, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36742134

ABSTRACT

Cytokine-mediated cancer therapy has the potential to enhance immunotherapeutic approaches and cancer elimination plans through the endowing of the immune system by providing improved anticancer immunity. Despite the encouraging pioneer studies on interleukins (ILs), the influence of ILs-originated therapeutics is still restricted by a class of potent immunoregulatory cytokines, systemic dose-limiting toxicities, ILs pleiotropy, and administration issues. During previous years, the area of transferring genes encoding immunostimulatory ILs was fundamentally widened to overcome these challenges and expedite ILs-based tumor regression. Numerous viral and non-viral delivery systems are currently available to act as crucial elements of the gene therapy toolbox. Moreover, cell-based cancer therapies are recruiting MSCs in the role of versatile gene delivery platforms to design one of the promising therapeutic approaches. These formulated gene carrier systems can provide possible alternatives to diminish dose-limiting adverse effects, promote administration, and enhance the therapeutic activity of ILs-derived treatment modalities in cancer treatment. This review provides a discussion on the advances of ILs gene delivery systems while focusing on the developing platforms in preclinical cancer immunogene therapy studies.

7.
J Cancer Res Clin Oncol ; 149(1): 511-529, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36342520

ABSTRACT

INTRODUCTION: Receptor/ligand pair immune checkpoints are inhibitors that regulate immunity as vital "Don't Find-Me" signals to the adaptive immune system, additionally, the essential goals of anti-cancer therapy. Moreover, the immune checkpoints are involved in treatment resistance in cancer therapy. The immune checkpoints as a signal from "self" and their expression on healthy cells prevent phagocytosis. Cells (e.g., senescent and/or apoptotic cells) with low immune checkpoints, such as low CD47 and/or PD-L1, are phagocytosed, which is necessary for tissue integrity and homeostasis maintenance. In other words, cancer cells induce increased CD47 expression in the tumor microenvironment (TME), avoiding their clearance by immune cells. PD-L1 and/or CD47 expression tumors have also been employed as biomarkers to guide cure prospects. Thus, targeting innate and adaptive immune checkpoints might improve the influence of the treatments on tumor cells. However, the CD47 regulation in the TME stands intricate, so much of this process has stayed a riddle. In this line, less attention has been paid to cytokines in TME. Cytokines are significant regulators of tumor immune surveillance, and they do this by controlling the actions of the immune cell. Recently, it has been suggested that different types of cytokines at TME might cooperate with others that contribute to the regulation of CD47 and/or PD-L1. MATERIALS AND METHODS: The data were searched in available databases and a Web Search engine (PubMed, Scopus, and Google Scholar) using related keywords in the title, abstract, and keywords. CONCLUSION: Given the significant role of pro/anti-inflammatory signaling in the TME, we discuss the present understanding of pro/anti-inflammatory signaling implications in "Don't Eat-Me" regulation signals, particularly CD47, in the pathophysiology of cancers and come up with innovative opinions for the clinical transformation and personalized medicine.


Subject(s)
CD47 Antigen , Neoplasms , Humans , CD47 Antigen/metabolism , B7-H1 Antigen/metabolism , Tumor Microenvironment , Immunotherapy , Neoplasms/pathology , Cytokines , Signal Transduction
8.
Int Immunopharmacol ; 113(Pt A): 109320, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274482

ABSTRACT

Malignant melanoma is one of the most aggressive human neoplasms responsible for the majority of skin cancer-related deaths in its advanced stages. Achieving a thorough knowledge of reliable tumor-originated biomarkers and molecular mechanisms can provide many practical approaches and guide the way towards the design of rational curative therapies to improve the survival rate of patients. Cancer cells, including melanoma cells, release high amounts of a broad family of nanovesicles, containing different biochemical messages. Exosomes are a type of extracellular vesicles (EVs) that are generated by different cell populations and participate in the intercellular communication of surrounding and distant cells/tissues. Exosome cargo consists of several biologically active proteins and genomic components. Tumor cells tend to release exosomes throughout the tumor microenvironment, which affects the biological performance of recipient cells. Recent evidence provides new perspective in melanoma management, showing that melanoma-derived exosomes (MEXs) may represent a valuable tool for melanoma diagnosis and treatment. This review presents a summary of the potential role of MEXs in the early diagnosis of melanoma. More importantly, we also discuss the capacity of MEXs in reproducing numerous tumor-related functions required for angiogenesis, immune system modulation, induction of migration and metastatic spread, tumor chemotherapy resistance, and melanoma tumor progression and survival. Considering the advent of novel bioengineering and immunotherapy approaches, natural exosomes can be exerted as nanocarriers and cancer vaccines to facilitate the conduction of more efficient cancer treatment.


Subject(s)
Exosomes , Extracellular Vesicles , Melanoma , Neoplasms , Skin Neoplasms , Humans , Exosomes/metabolism , Extracellular Vesicles/metabolism , Melanoma/diagnosis , Melanoma/therapy , Melanoma/metabolism , Neoplasms/drug therapy , Tumor Microenvironment , Skin Neoplasms/diagnosis , Skin Neoplasms/therapy , Skin Neoplasms/metabolism , Biomarkers, Tumor/metabolism
9.
Avicenna J Phytomed ; 12(3): 295-308, 2022.
Article in English | MEDLINE | ID: mdl-36186932

ABSTRACT

Objective: The aim of this study was to investigate the efficacy of mesenchyme stem cells (MSCs) derived from human adipose tissue (hMSCs) as carriers for delivery of galbanic acid (GBA), a potential anticancer agent, loaded into poly (lactic-co-glycolic acid) (PLGA) nanoparticles (nano-engineered hMSCs) against tumor cells. Materials and Methods: GBA-loaded PLGA nanoparticles (PLGA/GBA) were prepared by single emulsion method and their physicochemical properties were evaluated. Then, PLGA/GBA nanoparticles were incorporated into hMSCs (hMSC/PLGA-GBA) and their migration ability and cytotoxicity against colon cancer cells were investigated. Results: The loading efficiency of PLGA/GBA nanoparticles with average size of 214±30.5 nm into hMSCs, was about 85 and 92% at GBA concentration of 20 and 40 µM, respectively. Nano-engineered hMSCs showed significant higher migration to cancer cells (C26) compared to normal cells (NIH/3T3). Furthermore, nano-engineered hMSCs could effectively induce cell death in C26 cells in comparison with non-engineered hMSCs. Conclusion: hMSCs could be implemented for efficient loading of PLGA/GBA nanoparticles to produce a targeted cellular carrier against cancer cells. Thus, according to minimal toxicity on normal cells, it deserves to be considered as a valuable platform for drug delivery in cancer therapy.

10.
Iran J Basic Med Sci ; 25(6): 723-731, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35949303

ABSTRACT

Objectives: Exosomes became the subject of extensive research in drug delivery approach due to their potential applicability as therapeutic tools for cancer therapy. Thymoquinone (Tq) is an anti-cancer agent due to its great anti-proliferative effect. However, poor solubility and weak bioavailability restrict its therapeutic applications. In this study, exosomes secreted from human adipocyte-derived mesenchymal stem cells (AdMSCs) were isolated and the efficacy of a novel encapsulation method for loading of Tq was investigated. Finally, the cytotoxic effect of Tq incorporated exosomes against cancer cells was evaluated. Materials and Methods: Exosomes secreted from AdMSCs were isolated via ultracentrifugation and characterized by electron microscopy and western blotting. Then, through a novel encapsulation approach, Tq was loaded into exosomes by the combination of three methods including incubation, freeze-thawing, and surfactant treatment. Then, the encapsulation efficiency, in vitro cellular uptake, and cytotoxicity of Tq incorporated exosomes (Tq@EXOs) in MCF7 and L929 cells were estimated. Results: Tq loading into exosomes through our novel method caused a significant improvement in encapsulation efficiency of about 60%. The fluorescent microscopy and flow cytometry outcomes indicated the efficient uptake of Tq@EXOs-FITC by cells throughout 4 hr. Furthermore, MTT results displayed the ability of Tq@EXOs in effectively decreasing the cell viability of MCF7 without causing any obvious cytotoxicity on L929 as normal cells. Conclusion: The results suggest that our approach provides effective loading of Tq into exosomes which offer a valuable and safe platform for drug delivery to cancer cells thus having a great potential for clinical studies.

11.
Iran J Basic Med Sci ; 25(6): 745-754, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35949307

ABSTRACT

Objectives: The goal of this study was to evaluate the neuroprotective effects of vit B12 on paraquat-induced neurotoxicity. Materials and Methods: Thirty-six male mice were randomly divided into six groups. Three groups were treated intraperitoneally with paraquat (10 mg/kg) twice a week (with a 3-day interval) for 3 weeks. Normal saline, vit B12 (1 mg /kg), or vit C (50 mg/kg) was injected 30 min before paraquat administration. Other groups only received normal saline (control), vit B12, or vit C in the same protocol. Motor performance and coordination were assayed by challenging beam traversal, pole, open field, and rotarod tests. The hippocampus and serum samples were isolated to evaluate the oxidative stress (GSH and ROS), apoptosis (caspase 3), and inflammatory markers (TNF-α and IL-1ß). Results: Administration of paraquat leads to induction of motor deficits, which were improved by treatment with vit B12. In addition, vit B12 could prevent oxidative damage, apoptosis, and inflammation caused by paraquat. Conclusion: It seems that vit B12 could be a novel therapeutic agent in the management of paraquat induced-neurotoxicity.

12.
Inflammopharmacology ; 30(5): 1541-1553, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35882701

ABSTRACT

The emergence of pathogenic viruses is a worldwide frequent cause of diseases and, therefore, the design of treatments for viral infections stands as a significant research topic. Despite many efforts, the production of vaccines is faced with many obstacles and the high rate of viral resistance caused a severe reduction in the efficacy of antiviral drugs. However, the attempt of developing novel natural drugs, as well as the exertion of medicinal plants, may be an applicable solution for the treatment of viral diseases. Boswellia species exhibited a wide range of pharmacological activities in various conditions such as bronchial asthma, rheumatism, and Crohn's illness. Additionally, pharmacological studies reported the observance of practical antiviral activities from different parts of this substance, especially the oleo-gum-resin. Therefore, this work provided an overview on the antiviral properties of Boswellia species and their potential therapeutic effects in the field of COVID-19 pandemic.


Subject(s)
Boswellia , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Pandemics , SARS-CoV-2
13.
Basic Clin Pharmacol Toxicol ; 131(4): 251-261, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35802512

ABSTRACT

OBJECTIVE: Pulmonary fibrosis is an important complication of subacute paraquat (PQ) poisoning. Here, we reported a novel nanotherapeutic platform for PQ-induced pulmonary fibrosis in animal inhalation models using simvastatin (SV)-loaded into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). METHODS AND MATERIALS: Eight inhalations of normal saline, PQ (24 mg/kg), PQ plus SV (20 mg/kg), PQ plus SV-loaded PLGA NPs at doses of 5, 10 or 20 mg/kg or PQ plus PLGA NPs were given to rats. After the end of the treatment period, inflammatory factors and creatine phosphokinase as well as lung pathological changes and tracheal responsiveness were evaluated. RESULTS: Inhalation of SV-loaded PLGA NPs could significantly prevent the progression of PQ-induced pulmonary fibrosis especially at a dose of 10 mg through decreasing the serum level of inflammatory factors as well as contractile responses (p < 0.001) compared to PQ group. Pathological findings also confirmed the results. However, inhalation of non-formulated SV could not prevent tissue damage and fibrosis in comparision with SV-loaded PLGA NPs. CONCLUSION: Taken together, the present work provides us an idea about the pulmonary delivery of PLGA-SV NPs using nebulizer for the treatment of PQ poisoning. However, the efficacy of this formulation in human beings and clinical use needs to be more investigated.


Subject(s)
Nanoparticles , Pulmonary Fibrosis , Animals , Creatine Kinase , Humans , Lung/pathology , Paraquat/toxicity , Polylactic Acid-Polyglycolic Acid Copolymer/adverse effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Rats , Rats, Sprague-Dawley , Saline Solution/adverse effects , Simvastatin/pharmacology , Simvastatin/therapeutic use
14.
Crit Rev Anal Chem ; : 1-22, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35867568

ABSTRACT

Thrombin (TB) is classified among human blood coagulation proteins with key functions in hemostasis of blood vessels, wound healing, atherosclerosis, tissue adhesion, etc. Moreover, TB is involved as the main enzyme in the conversion of the fibrinogen to fibrin. Given the importance of TB detection in the clinical area, the development of innovative methods can considerably improve TB detection. Newly, aptasensors or aptamer-based biosensors have received special attention for sensitive and facile TB detection. In addition, the aptamer/nanomaterial conjugates have presented new prospects in accurate TB detection as nanoaptasensors. DNA-based enzymes or DNAzymes, as new biocatalysts, have many advantages over protein enzymes and can be used in analytical tools. This article reviews a brief overview of significant progresses regarding the various types of DNAzymes-based aptasensors and nano aptasensors developed for thrombin detection. In the following, challenges and prospects of TB detection by DNAzymes-based aptasensors are discussed.

15.
Carbohydr Polym ; 292: 119691, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35725215

ABSTRACT

A facile method was designed that can specifically deliver CRISPR/Cas9 into target cells nuclei and reduce the off-target effects. A multifunctional delivery vector for FOXM1 knockout was composed by integration of cell targeting polymer (hyaluronic acid) and cell and nuclear targeting group (AS1411 aptamer) on the surface of nanoparticles formed by genome editing plasmid and chitosan (CS) as the core (Apt-HA-CS-CRISPR/Cas9). The data of cytotoxicity experiment and western blot confirmed this issue. The results of flow cytometry analysis and fluorescence imaging demonstrated that Apt-HA-CS-CRISPR/Cas9 was significantly internalized into target cells (MCF-7, SK-MES-1, HeLa) but not into nontarget cells (HEK293). Furthermore, the in vivo studies displayed that the Apt-HA-CS-CRISPR/Cas9 was strongly rendered tumor inhibitory effect and delivered efficiently CRISPR/Cas9 into the tumor with no detectable distribution in other organs compared with naked plasmid. This approach provides an avenue for specific in vivo gene editing therapeutics with the lowest side effect.


Subject(s)
CRISPR-Cas Systems , Chitosan , Aptamers, Nucleotide , CRISPR-Cas Systems/genetics , Gene Transfer Techniques , HEK293 Cells , Humans , Hyaluronic Acid , Oligodeoxyribonucleotides
16.
J Ethnopharmacol ; 294: 115340, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35551973

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Saffron (Crocus sativus L.) has been introduced as a potential promising natural antioxidant with anti-obesity properties. In Persian Medicine, saffron has been used to control appetite and obesity. AIM OF THE STUDY: The present study aims to investigate the effect of saffron and its bioactive compounds on adipocyte differentiation in human adipose-derived stem cells (ADSCs). MATERIALS AND METHODS: Flow-Cytometric analysis was performed to quantify the cell surface markers. The extracts cytotoxicity on hASCs was measured using alamarBlue® assay whereas their activities against adipocyte differentiation were studied using Oil Red O staining. The level of Peroxisome proliferator-activated receptor-γ (PPARγ), Fatty Acid Synthetase (FAS), and Glyceraldehyde-3-phosphate dehydrogenase (GAPHD) which are key proteins in cell differentiation was investigated by western blot analysis. RESULTS: Flow-cytometry revealed the mesenchymal stem cells markers, CD44 and CD90, on ADSCs surface. The saffron, crocin, and crocetin significantly inhibited adipocyte differentiation while saffron up to 20 µg/mL and crocin, crocetin and safranal up to 20 µM did not exhibit cytotoxicity. The western blotting analysis revealed a remarkable reduction in the level of PPARγ, GAPDH, and FAS proteins by 10 and 20 µM of crocin and 2.5 and 5 µM of crocetin. CONCLUSION: It seems that saffron, crocin, and crocetin could efficiently inhibit the differentiation of hASCs with benefits for the treatment and prevention of obesity.


Subject(s)
Crocus , Mesenchymal Stem Cells , Adipocytes , Carotenoids , Cell Differentiation , Cyclohexenes , Humans , Obesity/metabolism , PPAR gamma/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Terpenes , Vitamin A/analogs & derivatives
17.
Biotechnol Prog ; 37(4): e3175, 2021 07.
Article in English | MEDLINE | ID: mdl-34013634

ABSTRACT

Interleukin 12 (IL-12) is considered as an important molecule for cancer immunotherapy with significant roles in hindering tumor activity, mostly mediated by tumor-associated macrophages and anti-angiogenic factors. Mesenchymal stem cells (MSCs) have been come out as promising carriers to increase the accumulation of drug/gene in tumor sites. As a vehicle, MSCs have various advantages, including tumor-specific propensity and migratory ability; however, they have limited transfection efficiency, compared to other cells. In this study, we introduced a novel delivery system based on poly-(amidoamine) (PAMAM) (G5) to deliver a plasmid encoding IL-12 to MSCs. Initially, 30% of the amine surface of PAMAM was substituted by 10-bromodecanoic acid. Then, the low molecular weight of protamine peptide was conjugated to PAMAM and PAMAM-alkyl with N-succinimidyl 3-(2-pyridyldithio) propionate as a linker. Physicochemical properties of this modified PAMAM were evaluated, including size and surface charge, toxicity, transfection efficiency to deliver reporter and IL-12 genes into MSCs and finally the migration potential of the engineered stem cells into cancer and normal cell lines (HepG2 and NIH/3 T3). The results showed that alkyl-peptide modified PAMAM with low toxicity had a higher potential to deliver green fluorescent protein and IL-12 genes to stem cells, than PMAMAM, PAMAM-alkyl and PAMAM-peptide. These engineered stem cells had a greater ability to migrate to cancer cells than normal cells. It can be concluded that engineered stem cells containing the IL-12 gene can be considered as an efficient cell carrier for cancer immunotherapy. Further clinical studies are needed to confirm these results.


Subject(s)
Dendrimers , Neoplasms , Dendrimers/chemistry , Interleukin-12/genetics , Molecular Weight , Neoplasms/therapy , Peptides/genetics , Plasmids/genetics , Protamines/genetics , Stem Cells
18.
Biotechnol Prog ; 37(4): e3174, 2021 07.
Article in English | MEDLINE | ID: mdl-33987965

ABSTRACT

Stem cells can be used to repair dysfunctional and injured (or cancerous) tissues by delivering therapeutics. However, in comparison with other cells, it is harder to transfect drugs or genes into stem cells. Dendrimers have been considered as efficient vectors to deliver both genes and drugs to stem cells due to their unique properties including adjustable molecular weight and size, low toxicity, high loading capacity, and having multiple peripheral chemical agents which can be functionalized to improve deliverance efficiency. In this review, we discuss dendrimer-mediated drug and gene delivery to stem cells as cellular vehicles and the role of this strategy in treating a variety of disorders via regenerative medicine approaches.


Subject(s)
Dendrimers , Dendrimers/chemistry , Gene Transfer Techniques , Genetic Therapy , Pharmaceutical Preparations , Stem Cells
19.
Iran J Basic Med Sci ; 24(12): 1743-1752, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35432810

ABSTRACT

Objectives: Dental pulp stem cells (DPSCs) can differentiate into functional neurons and have the potential for cell therapy in neurological diseases. Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein family shown neuroprotective effect in models of nerve damage.we evaluated the protective effects of G-CSF, conditioned media from DPSCs (DPSCs-CM) and conditioned media from transfected DPSCs with plasmid encoding G-CSF (DPSC-CMT) on SH-SY5Y exposed to CoCl2 as a model of hypoxia-induced neural damage. Materials and Methods: SH-SY5Y exposed to CoCl2 were treated with DPSCs-CM, G-CSF, simultaneous combination of DPSCs-CM and G-CSF and finally DPSC-CMT. Cell viability and apoptosis were determined by resazurin (or lactate dehydrogenase (LDH) assay alternatively) and propidium iodide (PI) staining. Western blot analysis was performed to detect changes in apoptotic protein levels. The interleukin-6 and interleukin-10 IL6/IL10 levels were measured with Enzyme-Linked Immunosorbent Assay (ELISA). Results: DPSCs-CM and G-CSF were able to significantly protect SH-SY5Y against neural cell damage caused by CoCl2 according to resazurin and LDH analysis. Also, the percentage of apoptotic cells decreased when SH-SY5Y were treated with DPSCs-CM and G-CSF simultaneously. After transfection of DPSCs with G-CSF plasmid, DPSC-CMT could significantly improve the protection. The amount of ß-catenin, cleaved PARP and caspase-3 were significantly decreased and the expression of survivin was considerably increased when hypoxic SH-SY5Y treated with DPSCs-CM plus G-CSF according to Western blot. Decreased level of IL-6/IL-10, which exposed to CoCl2, after treatment with DPSCs-CM indicated the suppression of inflammatory mediators. Conclusion: Combination therapy of G-CSF and DPSCs-CM improved the protective activity.

20.
Biotechnol Prog ; 36(6): e3025, 2020 11.
Article in English | MEDLINE | ID: mdl-32410328

ABSTRACT

Cell-based delivery system is a promising strategy to protect therapeutic agents from the immune system and provide targeted delivery. Mesenchymal stem cells (MSCs) have recently been introduced as an encouraging vehicle in cell-based gene therapy due to their unique features including tumor-tropic property and migratory ability. However, gene transfer into MSCs is limited due to low efficiency and cytotoxicity of carriers. In this study, we designed a novel delivery system based on polyethylenimine (PEI25 ) to improve these features of carrier and transfect plasmid encoding TRAIL to MSCs. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand of TNF family with selective effect on cancerous cells. Then, death induction and migration ability of TRAIL-expressing MSCs was studied in melanoma cells. The effect of engineered-MSCs as an antitumor vehicle was also investigated in mice bearing melanoma cells. Our findings indicated that heterocyclic amine derivative of PEI25 showed significant improvement in MSCs viability determined by MTT assay and gene expression using fluorescent microscopy, flow cytometry, and Western blot analysis. We observed that engineered-MSCs could migrate toward and induce cell death in B16F0 cells in vitro. The single administration of TRAIL-expressing MSCs could delay tumor appearance and efficiently reduce tumor weights. Hematoxylin and eosin staining of tumor sections revealed extensive neoplastic cells necrosis. Furthermore, engineered-MSCs could migrate and localize to tumors sites within 5 days. Our results indicated that MSCs engineered by modified-PEI/TRAIL complexes could be considered as a promising cellular vehicle for targeted tumor suppression.


Subject(s)
Genetic Therapy , Melanoma, Experimental/therapy , Mesenchymal Stem Cells/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , Animals , Apoptosis/drug effects , Cell Engineering/methods , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mesenchymal Stem Cells/chemistry , Mice , Polyethyleneimine/chemistry , Polyethyleneimine/metabolism , Polyethyleneimine/pharmacology , Polymers/chemistry , Polymers/therapeutic use , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...