Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biophys Chem ; 254: 106260, 2019 11.
Article in English | MEDLINE | ID: mdl-31522071

ABSTRACT

Molecular simulations based on classical force fields are a powerful method for shedding light on the complex behavior of biomolecules in solution. When cosolutes are present in addition to water and biomolecules, subtle balances of weak intermolecular forces have to be accounted for. This imposes high demands on the quality of the underlying force fields, and therefore force field development for small cosolutes is still an active field. Here, we present the development of a new urea force field from studies of urea solutions at ambient and elevated hydrostatic pressures based on a combination of experimental and theoretical approaches. Experimental densities and solvation shell properties from ab initio molecular dynamics simulations at ambient conditions served as the target properties for the force field optimization. Since urea is present in many marine life forms, elevated hydrostatic pressure was rigorously addressed: densities at high pressure were measured by vibrating tube densitometry up to 500 bar and by X-ray absorption up to 5 kbar. Densities were determined by the perturbed-chain statistical associating fluid theory equation of state. Solvation properties were determined by embedded cluster integral equation theory and ab initio molecular dynamics. Our new force field is able to capture the properties of urea solutions at high pressures without further high-pressure adaption, unlike trimethylamine-N-oxide, for which a high-pressure adaption is necessary.


Subject(s)
Molecular Dynamics Simulation , Urea/chemistry , Pressure , Solutions/chemistry , Thermodynamics , Water/chemistry
2.
Soft Matter ; 15(36): 7295-7304, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31483431

ABSTRACT

The molecular mechanisms responsible for outstanding lubrication of natural systems, like articular joints, have been the focus of scientific research for several decades. One essential aspect is the lubrication under pressure, where it is important to understand how the lubricating entities adapt under dynamic working conditions in order to fulfill their function. We made a structural investigation of a model system consisting of two of the molecules present at the cartilage interface, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and hyaluronan, at high hydrostatic pressure. Phospholipid layers are found at the cartilage surfaces and are able to considerably reduce friction. Their behavior under load and varied solution conditions is important as pressures of 180 bar are encountered during daily life activities. We focus on how divalent ions, like Ca2+, affect the interaction between DPPC and hyaluronan, as other investigations have indicated that calcium ions influence their interaction. It could be shown that already low amounts of Ca2+ strongly influence the interaction of hyaluronan with DPPC. Our results suggest that the calcium ions increase the amount of adsorbed hyaluronan indicating an increased electrostatic interaction. Most importantly, we observe a modification of the DPPC phase diagram as hyaluronan absorbs to the bilayer which results in an Lα-like structure at low temperatures and a decoupling of the leaflets forming an asymmetric bilayer structure.

3.
Biophys Chem ; 252: 106210, 2019 09.
Article in English | MEDLINE | ID: mdl-31265976

ABSTRACT

In this work, the effect of cholesterol on the pressure response of solid-supported phospholipid multilayers is analyzed. It is shown that DMPC multilayers become highly pressure-responsive by the incorporation of low amounts of cholesterol, resulting in a strong pressure-induced expansion of the bilayer spacing. This is accompanied by a high tendency of the multilayer system to detach from the substrate. Increasing the cholesterol concentration reduces the pressure-induced expansion and the membrane structure remains largely unchanged upon pressurization, consequently the stability of the multilayers improves. For a determination of the influence of the substrate, the pressure-dependent behavior of multilayers is compared to that of solid-supported bilayers and multi-lamellar vesicles in bulk solution. While single-supported bilayers remain largely unaffected by external pressure independent of their cholesterol content, multi-lamellar vesicles and multilayers behave similarly.


Subject(s)
Cholesterol/chemistry , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Pressure , Scattering, Small Angle , X-Ray Diffraction
4.
Langmuir ; 34(19): 5403-5408, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29658720

ABSTRACT

We present an in situ X-ray reflectivity study of the adsorption behavior of the protein lysozyme on titanium oxide layers under variation of different thermodynamic parameters, such as temperature, hydrostatic pressure, and pH value. Moreover, by varying the layer thickness of the titanium oxide layer on a silicon wafer, changes in the adsorption behavior of lysozyme were studied. In total, we determined less adsorption on titanium oxide compared with silicon dioxide, while increasing the titanium oxide layer thickness causes stronger adsorption. Furthermore, the variation of temperature from 20 to 80 °C yields an increase in the amount of adsorbed lysozyme at the interface. Additional measurements with variation of the pH value of the system in a region between pH 2 and 12 show that the surface charge of both protein and titanium oxide has a crucial role in the adsorption process. Further pressure-dependent experiments between 50 and 5000 bar show a reduction of the amount of adsorbed lysozyme with increasing pressure.


Subject(s)
Muramidase/metabolism , Titanium/chemistry , Water/chemistry , Adsorption , Hydrogen-Ion Concentration , Muramidase/chemistry , Surface Properties , Temperature , Thermodynamics
5.
J Phys Chem B ; 122(14): 3953-3960, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29488751

ABSTRACT

An X-ray reflectivity study on the adsorption behavior of human apolipoprotein A1 (apoA1) at hydrophilic and hydrophobic interfaces is presented. It is shown that the protein interacts via electrostatic and hydrophobic interactions with the interfaces, resulting in the absorption of the protein. pH dependent measurements at the solid/liquid interface between silicon dioxide and aqueous protein solution show that in a small pH range between pH 4 and 6, adsorption is increased due to electrostatic attraction. Here, the native shape of the protein seems to be conserved. In contrast, the adsorption at the liquid/gas interface is mainly driven by hydrophobic effects, presumably by extending the hydrophobic regions of the amphipathic helices, and results in a conformational change of the protein during adsorption. However, the addition of differently charged membrane-forming lipids at the liquid/gas interface illustrates the ability of apoA1 to include lipids, resulting in a depletion of the lipids from the interface.


Subject(s)
Apolipoprotein A-I/chemistry , Proteins/chemistry , Silicon Dioxide/chemistry , Water/chemistry , Air , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Static Electricity , Surface Tension
6.
Angew Chem Int Ed Engl ; 56(42): 12958-12961, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28816388

ABSTRACT

We have gained new insight into the so-called hydrophobic gap, a molecularly thin region of decreased electron density at the interface between water and a solid hydrophobic surface, by X-ray reflectivity experiments and molecular dynamics simulations at different hydrostatic pressures. Pressure variations show that the hydrophobic gap persists up to a pressure of 5 kbar. The electron depletion in the interfacial region strongly decreases with an increase in pressure, indicating that the interfacial region is compressed more strongly than bulk water. The decrease is most significant up to 2 kbar; beyond that, the pressure response of the depletion is less pronounced.

7.
Food Chem ; 218: 256-260, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27719907

ABSTRACT

In this work, the interaction of soy sauces with hydrophobic surfaces has been analyzed. Hydrophobic self-assembled monolayers on gold or silicon dioxide were used to harvest conditioning layers from soy sauce products with varying amounts of additives. The data was compared to adsorption of soy protein and glutamic acid as common ingredients. Spectral ellipsometry revealed that all tested sauces led to the formation of thin overlayers on hydrophobic surfaces. Products with less additives yielded adlayers in the same thickness range as pure soy protein. In contrast, sauces with more ingredients create distinctly thicker films. Using water contact angle goniometry, it is shown that all adlayers render the substrate more hydrophilic. Infrared spectroscopy provided a deeper insight into the adlayer chemistry and revealed that the adlayer composition is dominated by protein rich components. X-ray reflectivity on selected films provided further insight into the density profiles within the adlayers on the molecular scale.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Soy Foods/analysis , Food Analysis , Food Handling , Gold/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties , Water/analysis , X-Rays
8.
J Phys Chem B ; 120(29): 7148-53, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27387338

ABSTRACT

The effect of hydrostatic pressure on the structure of a bicontinuous microemulsion in the presence of a solid interface has been studied by X-ray reflectometry and compared to the bulk behavior determined by small-angle X-ray scattering. Surface-induced lamellar ordering is observed close to the hydrophilic interface, which persists upon compression. The lamellar domains are compressed, but the correlation length of lamellar order does not change with pressure. SAXS measurements on the bulk microemulsion revealed an increased order upon pressurization. Although pressure can cause the formation of highly ordered lamellar phases from ordered bicontinuous cubic phases, such a scenario is not observed for the disordered analogue studied here. High pressure increases the stiffness of the interfacial surfactant layer, but this is not sufficient to overcome the loss in conformational entropy that would result from a transition to an ordered lamellar phase. Possible technological and biological implications of our results are briefly discussed.

9.
Langmuir ; 32(11): 2638-43, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26927365

ABSTRACT

In this work, the structure of solid-supported lipid multilayers exposed to increased hydrostatic pressure was studied in situ by X-ray reflectometry at the solid-liquid interface between silicon and an aqueous buffer solution. The layers' vertical structure was analyzed up to a maximum pressure of 4500 bar. The multilayers showed phase transitions from the fluid into different gel phases. With increasing pressure, a gradual filling of the sublayers between the hydrophilic head groups with water was observed. This process was inverted when the pressure was decreased, yielding finally smaller water layers than those in the initial state. As is commonly known, water has an abrasive effect on lipid multilayers by the formation of vesicles. We show that increasing pressure can reverse this process so that a controlled switching between multi- and bilayers is possible.


Subject(s)
Lipid Bilayers/chemistry , Dimyristoylphosphatidylcholine/chemistry , Hydrostatic Pressure , Phase Transition , Silicon , Water/chemistry
10.
J Phys Condens Matter ; 27(23): 235103, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25992483

ABSTRACT

A study of lysozyme adsorption below a behenic acid membrane and at the solid-liquid interface between aqueous lysozyme solution and a silicon wafer in the presence of sodium chloride is presented. The salt concentration was varied between 1 mmol L(-1) and 1000 mmol L(-1). X-ray reflectivity data show a clear dependence of the protein adsorption on the salt concentration. Increasing salt concentrations result in a decreased protein adsorption at the interface until a complete suppression at high concentrations is reached. This effect can be attributed to a reduced attractive electrostatic interaction between the positively charged proteins and negatively charged surfaces by charge screening. The measurements at the solid-liquid interfaces show a transition from unoriented order of lysozyme in the adsorbed film to an oriented order with the short protein axis perpendicular to the solid-liquid interface with rising salt concentration.


Subject(s)
Muramidase/chemistry , Sodium Chloride/pharmacology , Adsorption/drug effects , Animals , Dose-Response Relationship, Drug , Fatty Acids/chemistry , Membranes, Artificial , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...