Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 814386, 2022.
Article in English | MEDLINE | ID: mdl-35463414

ABSTRACT

Phytoplankton-bacteria interactions rule over carbon fixation in the sunlit ocean, yet only a handful of phytoplanktonic-bacteria interactions have been experimentally characterized. In this study, we investigated the effect of three bacterial strains isolated from a long-term microcosm experiment with one Ostreococcus strain (Chlorophyta, Mamiellophyceae). We provided evidence that two Roseovarius strains (Alphaproteobacteria) had a beneficial effect on the long-term survival of the microalgae whereas one Winogradskyella strain (Flavobacteriia) led to the collapse of the microalga culture. Co-cultivation of the beneficial and the antagonistic strains also led to the loss of the microalga cells. Metagenomic analysis of the microcosm is consistent with vitamin B12 synthesis by the Roseovarius strains and unveiled two additional species affiliated to Balneola (Balneolia) and Muricauda (Flavobacteriia), which represent less than 4% of the reads, whereas Roseovarius and Winogradskyella recruit 57 and 39% of the reads, respectively. These results suggest that the low-frequency bacterial species may antagonize the algicidal effect of Winogradskyella in the microbiome of Ostreococcus tauri and thus stabilize the microalga persistence in the microcosm. Altogether, these results open novel perspectives into long-term stability of phytoplankton cultures.

2.
Microbiology (Reading) ; 166(8): 759-776, 2020 08.
Article in English | MEDLINE | ID: mdl-32490790

ABSTRACT

Bacterial lipoproteins are secreted proteins that are post-translationally lipidated. Following synthesis, preprolipoproteins are transported through the cytoplasmic membrane via the Sec or Tat translocon. As they exit the transport machinery, they are recognized by a phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt), which converts them to prolipoproteins by adding a diacylglyceryl group to the sulfhydryl side chain of the invariant Cys+1 residue. Lipoprotein signal peptidase (LspA or signal peptidase II) subsequently cleaves the signal peptide, liberating the α-amino group of Cys+1, which can eventually be further modified. Here, we identified the lgt and lspA genes from Corynebacterium glutamicum and found that they are unique but not essential. We found that Lgt is necessary for the acylation and membrane anchoring of two model lipoproteins expressed in this species: MusE, a C. glutamicum maltose-binding lipoprotein, and LppX, a Mycobacterium tuberculosis lipoprotein. However, Lgt is not required for these proteins' signal peptide cleavage, or for LppX glycosylation. Taken together, these data show that in C. glutamicum the association of some lipoproteins with membranes through the covalent attachment of a lipid moiety is not essential for further post-translational modification.


Subject(s)
Corynebacterium glutamicum/enzymology , Lipoproteins/metabolism , Transferases/metabolism , Acylation , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/growth & development , Corynebacterium glutamicum/metabolism , Genetic Complementation Test , Maltose/metabolism , Mutation , Mycobacterium tuberculosis/genetics , Protein Processing, Post-Translational , Protein Sorting Signals , Transferases/genetics
3.
G3 (Bethesda) ; 6(7): 2063-71, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27175016

ABSTRACT

Estimates of the fitness effects of spontaneous mutations are important for understanding the adaptive potential of species. Here, we present the results of mutation accumulation experiments over 265-512 sequential generations in four species of marine unicellular green algae, Ostreococcus tauri RCC4221, Ostreococcus mediterraneus RCC2590, Micromonas pusilla RCC299, and Bathycoccus prasinos RCC1105. Cell division rates, taken as a proxy for fitness, systematically decline over the course of the experiment in O. tauri, but not in the three other species where the MA experiments were carried out over a smaller number of generations. However, evidence of mutation accumulation in 24 MA lines arises when they are exposed to stressful conditions, such as changes in osmolarity or exposure to herbicides. The selection coefficients, estimated from the number of cell divisions/day, varies significantly between the different environmental conditions tested in MA lines, providing evidence for advantageous and deleterious effects of spontaneous mutations. This suggests a common environmental dependence of the fitness effects of mutations and allows the minimum mutation/genome/generation rates to be inferred at 0.0037 in these species.


Subject(s)
Aquatic Organisms/genetics , Chlorophyta/genetics , Genetic Fitness , Mutation Rate , Adaptation, Physiological/genetics , Aquatic Organisms/drug effects , Cell Division/drug effects , Chlorophyta/drug effects , Herbicides/toxicity , Osmolar Concentration , Sodium Chloride/pharmacology , Species Specificity , Stress, Physiological
4.
J Biomol Struct Dyn ; 33(2): 447-59, 2015.
Article in English | MEDLINE | ID: mdl-24601825

ABSTRACT

Trehalose mycolates are fundamental characteristics of the outer membrane (mycomembrane) of Mycobacterium tuberculosis and they are supposed to play a key role in the low permeability and high resistance of mycobacteria to many antibiotics; however, still, the molecular characteristics making mycolates so effective in their biological function are not fully understood. This work aims to investigate by quasi-elastic neutron scattering the diffusive dynamical properties of trehalose mycolates in water mixtures as a function of temperature, energy and exchanged wavevector Q in order to elucidate the dynamics-function relation in the mycomembrane. A comparison with lecithin lipids in water mixtures is performed since they are considered among the most rigid and resistant lipids. From the analysis of the data collected as a function of temperature, a lower temperature dependence of the mobility as well as a higher rigidity of trehalose mycolates in comparison with lecithin lipids are highlighted. The present findings provide detailed molecular information which allows to go ahead in the understanding at a molecular level of the resistance to stress and antibiotics by corynebacteria and mycobacteria.


Subject(s)
Mycobacterium tuberculosis/chemistry , Mycolic Acids/chemistry , Trehalose/chemistry , Cell Membrane/chemistry , Cell Wall/chemistry , Lecithins/chemistry , Models, Chemical , Water/chemistry
5.
J Bacteriol ; 195(18): 4121-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23852866

ABSTRACT

We have previously described the posttranslational modification of pore-forming small proteins of Corynebacterium by mycolic acid, a very-long-chain α-alkyl and ß-hydroxy fatty acid. Using a combination of chemical analyses and mass spectrometry, we identified the mycoloyl transferase (Myt) that catalyzes the transfer of the fatty acid residue to yield O-acylated polypeptides. Inactivation of corynomycoloyl transferase C (cg0413 [Corynebacterium glutamicum mytC {CgmytC}]), one of the six Cgmyt genes of C. glutamicum, specifically abolished the O-modification of the pore-forming proteins PorA and PorH, which is critical for their biological activity. Expectedly, complementation of the cg0413 mutant with either the wild-type gene or its orthologues from Corynebacterium diphtheriae and Rhodococcus, but not Nocardia, fully restored the O-acylation of the porins. Consistently, the three-dimensional structure of CgMytC showed the presence of a unique loop that is absent from enzymes that transfer mycoloyl residues onto both trehalose and the cell wall arabinogalactan. These data suggest the implication of this structure in the enzyme specificity for protein instead of carbohydrate.


Subject(s)
Acyltransferases/metabolism , Bacterial Proteins/metabolism , Corynebacterium glutamicum/enzymology , Mycolic Acids/metabolism , Peptides/metabolism , Porins/metabolism , Acylation , Acyltransferases/chemistry , Acyltransferases/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Models, Molecular , Molecular Sequence Data , Porins/genetics , Substrate Specificity
6.
J Bacteriol ; 194(3): 587-97, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22123248

ABSTRACT

Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The cell wall of these bacteria is composed of a heteropolymer of peptidoglycan (PG) linked to arabinogalactan (AG), which in turn is covalently associated with an atypical outer membrane, here called mycomembrane (M). The latter structure has been visualized by cryo-electron microscopy of vitreous sections, but its biochemical composition is still poorly defined, thereby hampering the elucidation of its physiological function. In this report, we show for the first time that the mycomembrane-linked heteropolymer of PG and AG (M-AG-PG) of C. glutamicum can be physically separated from the inner membrane on a flotation density gradient. Analysis of purified M-AG-PG showed that the lipids that composed the mycomembrane consisted almost exclusively of mycolic acid derivatives, with only a tiny amount, if any, of phospholipids and lipomannans, which were found with the characteristic lipoarabinomannans in the plasma membrane. Proteins associated with or inserted in the mycomembrane were extracted from M-AG-PG with lauryl-dimethylamine-oxide (LDAO), loaded on an SDS-PAGE gel, and analyzed by tandem mass spectrometry or by Western blotting. Sixty-eight different proteins were identified, 19 of which were also found in mycomembrane fragments released by the terminal-arabinosyl-transferase-defective ΔAftB strain. Almost all of them are predicted to contain a signal sequence and to adopt the characteristic ß-barrel structure of Gram-negative outer membrane proteins. These presumed mycomembrane proteins include the already-known pore-forming proteins (PorA and PorB), 5 mycoloyltransferases (cMytA, cMytB, cMytC, cMytD, and cMytF), several lipoproteins, and unknown proteins typified by a putative C-terminal hydrophobic anchor.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Corynebacterium glutamicum/metabolism , Mycolic Acids/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/genetics , Corynebacterium glutamicum/chemistry , Corynebacterium glutamicum/genetics , Mass Spectrometry , Mycolic Acids/analysis
7.
J Bacteriol ; 192(11): 2691-700, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20363942

ABSTRACT

Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal beta(1 --> 2)-linked Araf residues. Here we show that Delta aftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a Delta aftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the Delta aftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum.


Subject(s)
Cell Membrane/metabolism , Corynebacterium glutamicum/metabolism , Galactans/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Blotting, Western , Cell Membrane/genetics , Cell Membrane/ultrastructure , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/ultrastructure , Cryoelectron Microscopy , Electrophoresis, Polyacrylamide Gel , Galactans/chemistry , Galactans/genetics , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...