Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37090612

ABSTRACT

Cells adapt to environments and tune gene expression by controlling the concentrations of proteins and their kinetics in regulatory networks. In both eukaryotes and prokaryotes, experiments and theory increasingly attest that these networks can and do consume bio-chemical energy. How does this dissipation enable cellular behaviors unobtainable in equilibrium? This open question demands quantitative models that transcend thermodynamic equilibrium. Here we study the control of a simple, ubiquitous gene regulatory motif to explore the consequences of departing equilibrium in kinetic cycles. Employing graph theory, we find that dissipation unlocks nonmonotonicity and enhanced sensitivity of gene expression with respect to a transcription factor's concentration. These features allow a single transcription factor to act as both a repressor and activator at different levels or achieve outputs with multiple concentration regions of locally-enhanced sensitivity. We systematically dissect how energetically-driving individual transitions within regulatory networks, or pairs of transitions, generates more adjustable and sensitive phenotypic responses. Our findings quantify necessary conditions and detectable consequences of energy expenditure. These richer mathematical behaviors-feasibly accessed using biological energy budgets and rates-may empower cells to accomplish sophisticated regulation with simpler architectures than those required at equilibrium. Significance Statement: Growing theoretical and experimental evidence demonstrates that cells can (and do) spend biochemical energy while regulating their genes. Here we explore the impact of departing from equilibrium in simple regulatory cycles, and learn that beyond increasing sensitivity, dissipation can unlock more flexible input-output behaviors that are otherwise forbidden without spending energy. These more complex behaviors could enable cells to perform more sophisticated functions using simpler systems than those needed at equilibrium.

2.
ACS Chem Biol ; 13(5): 1291-1298, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29584955

ABSTRACT

Two biological activities of butyrate in the colon (suppression of proliferation of colonic epithelial stem cells and inflammation) correlate with inhibition of the activity of histone deacetylases. Cellular and biochemical studies of molecules similar in structure to butyrate, but different in molecular details (functional groups, chain-length, deuteration, oxidation level, fluorination, or degree of unsaturation), demonstrated that these activities were sensitive to molecular structure, and were compatible with the hypothesis that butyrate acts by binding to the Zn2+ in the catalytic site of histone deacetylases. Structure-activity relationships drawn from a set of 36 compounds offer a starting point for the design of new compounds targeting the inhibition of histone deacetylases. The observation that butyrate was more potent than other short-chain fatty acids is compatible with the hypothesis that crypts evolved (at least in part), to separate stem cells at the base of crypts from butyrate produced by commensal bacteria.


Subject(s)
Butyrates/metabolism , Colon/metabolism , Cell Proliferation/drug effects , Enzyme-Linked Immunosorbent Assay , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Inflammation/prevention & control , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Macrophages/metabolism , Oxidation-Reduction
3.
Anal Chem ; 89(3): 1531-1539, 2017 02 07.
Article in English | MEDLINE | ID: mdl-27936618

ABSTRACT

Separation of nucleic acids has long served as a central goal of analytical research. Innovations in this field may soon enable the development of rapid, on-site sequencing devices that significantly improve both the availability and accuracy of detailed bioinformatics. However, achieving efficient continuous-flow operation and size-based fractionation of DNA still presents considerable challenges. Current methods have not yet satisfied the need for rapid fractionation of size-heterogeneous nucleic acid samples into specific and narrow size distributions. Dielectrophoretic (DEP) mechanisms integrated in microfluidic devices offer unique advantages for such applications, including short processing times, microscale reaction volumes, and the potential for low cost and portability. To facilitate such developments, we have adapted a microfluidic constriction sorter device to separate a wide range of nucleic acid analytes into distinct microchannel outlets. This work demonstrates selective and tunable deflection of DNA using alternating current (AC) insulator-based dielectrophoresis. We report conditions for size-based DEP sorting of 1.0, 10.2, 19.5, and 48.5 kbp dsDNA analytes, including both plasmid and genomic DNA. Applied potentials range from 200 to 2400 Vpp with frequencies ranging from 50 Hz to 20 kHz. These conditions result in sorting efficiencies up to 92% with a strong dependence on applied potentials and frequencies. In low-frequency AC fields, long DNA molecules form macro-ion clusters. This behavior is associated with an apparent shift from positive to negative DEP sorting behavior. Using a finite element model, we characterize the dynamics of sorting in the microdevice and link differential sorting to differences in dielectrophoretic mobility. We propose the use of a continuous-flow sorting strategy to facilitate future coupling to next generation sequencing approaches.


Subject(s)
DNA/isolation & purification , Electrophoresis/methods , Bacteriophage lambda/genetics , DNA, Viral/isolation & purification , Electrophoresis/instrumentation , Lab-On-A-Chip Devices , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...