Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 593(7857): 67-73, 2021 05.
Article in English | MEDLINE | ID: mdl-33953412

ABSTRACT

Transition metal (oxy)hydroxides are promising electrocatalysts for the oxygen evolution reaction1-3. The properties of these materials evolve dynamically and heterogeneously4 with applied voltage through ion insertion redox reactions, converting materials that are inactive under open circuit conditions into active electrocatalysts during operation5. The catalytic state is thus inherently far from equilibrium, which complicates its direct observation. Here, using a suite of correlative operando scanning probe and X-ray microscopy techniques, we establish a link between the oxygen evolution activity and the local operational chemical, physical and electronic nanoscale structure of single-crystalline ß-Co(OH)2 platelet particles. At pre-catalytic voltages, the particles swell to form an α-CoO2H1.5·0.5H2O-like structure-produced through hydroxide intercalation-in which the oxidation state of cobalt is +2.5. Upon increasing the voltage to drive oxygen evolution, interlayer water and protons de-intercalate to form contracted ß-CoOOH particles that contain Co3+ species. Although these transformations manifest heterogeneously through the bulk of the particles, the electrochemical current is primarily restricted to their edge facets. The observed Tafel behaviour is correlated with the local concentration of Co3+ at these reactive edge sites, demonstrating the link between bulk ion-insertion and surface catalytic activity.

3.
ACS Nano ; 14(3): 2869-2879, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32083842

ABSTRACT

The growth of Ge nanowires in water inside a liquid transmission electron microscope (TEM) holder has been demonstrated at room temperature. Each nanowire growth event was stimulated by the incident electron beam on otherwise unsupported liquid Ga or liquid In nanodroplets. A variety of conditions were explored, including liquid metal nanodroplet surface condition, liquid metal nanodroplet size and density, formal concentration of dissolved GeO2, and electron beam intensity. The cumulative observations from a series of videos recorded during growth events suggested the following points. First, the conditions necessary for initiating nanowire growth at uncontacted liquid metal nanodroplets in a liquid TEM cell indicate the process was governed by solvated electrons generated from secondary electrons scattered by the liquid metal nanodroplets. The attained current densities were comparable to those achieved in conventional electrochemical liquid-liquid-solid (ec-LLS) growths outside of a TEM. Second, the surface condition of the liquid metal nanodroplets was quite influential on whether nanowire growth occurred and surface diffusion of Ge adatoms contributed to the rate of crystallization. Third, the Ge nanowire growth rates were limited by the feed rate of Ge to the crystal growth front rather than the rate of crystallization at the liquid metal/solid Ge interface. Estimates of an electrochemical current for the reduction of dissolved GeO2 were nominally in line with currents used for Ge nanowire growth by ec-LLS outside of the TEM. Fourth, the Ge nanowire growths in the liquid TEM cell occurred far from thermodynamic equilibrium, with supersaturation values of 104 prior to nucleation. These collective points provide insight on how to further control and improve Ge nanowire morphology and crystallographic quality by the ec-LLS method.

4.
Science ; 353(6299): 566-71, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27493180

ABSTRACT

The kinetics and uniformity of ion insertion reactions at the solid-liquid interface govern the rate capability and lifetime, respectively, of electrochemical devices such as Li-ion batteries. Using an operando x-ray microscopy platform that maps the dynamics of the Li composition and insertion rate in Li(x)FePO4, we found that nanoscale spatial variations in rate and in composition control the lithiation pathway at the subparticle length scale. Specifically, spatial variations in the insertion rate constant lead to the formation of nonuniform domains, and the composition dependence of the rate constant amplifies nonuniformities during delithiation but suppresses them during lithiation, and moreover stabilizes the solid solution during lithiation. This coupling of lithium composition and surface reaction rates controls the kinetics and uniformity during electrochemical ion insertion.

SELECTION OF CITATIONS
SEARCH DETAIL
...