Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203837

ABSTRACT

Unlike classic APS, CAPS causes multiple microthrombosis due to an increased inflammatory response, known as a "thrombotic storm". CAPS typically develops after infection, trauma, or surgery and begins with the following symptoms: fever, thrombocytopenia, muscle weakness, visual and cognitive disturbances, abdominal pain, renal failure, and disseminated intravascular coagulation. Although the presence of antiphospholipid antibodies in the blood is one of the diagnostic criteria, the level of these antibodies can fluctuate significantly, which complicates the diagnostic process and can lead to erroneous interpretation of rapidly developing symptoms. Triple therapy is often used to treat CAPS, which includes the use of anticoagulants, plasmapheresis, and high doses of glucocorticosteroids and, in some cases, additional intravenous immunoglobulins. The use of LMWH is recommended as the drug of choice due to its anti-inflammatory and anticoagulant properties. CAPS is a multifactorial disease that requires not only an interdisciplinary approach but also highly qualified medical care, adequate and timely diagnosis, and appropriate prevention in the context of relapse or occurrence of the disease. Improved new clinical protocols and education of medical personnel regarding CAPS can significantly improve the therapeutic approach and reduce mortality rates.


Subject(s)
Antiphospholipid Syndrome , Cognitive Dysfunction , Humans , Antiphospholipid Syndrome/diagnosis , Antiphospholipid Syndrome/therapy , Heparin, Low-Molecular-Weight , Antibodies, Antiphospholipid , Anticoagulants/therapeutic use
2.
Int J Mol Sci ; 24(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37762167

ABSTRACT

Newborns are the most vulnerable patients for thrombosis development among all children, with critically ill and premature infants being in the highest risk group. The upward trend in the rate of neonatal thrombosis could be attributed to progress in the treatment of severe neonatal conditions and the increased survival in premature babies. There are physiological differences in the hemostatic system between neonates and adults. Neonates differ in concentrations and rate of synthesis of most coagulation factors, turnover rates, the ability to regulate thrombin and plasmin, and in greater variability compared to adults. Natural inhibitors of coagulation (protein C, protein S, antithrombin, heparin cofactor II) and vitamin K-dependent coagulation factors (factors II, VII, IX, X) are low, but factor VIII and von Willebrand factor are elevated. Newborns have decreased fibrinolytic activity. In the healthy neonate, the balance is maintained but appears more easily converted into thrombosis. Neonatal hemostasis has less buffer capacity, and almost 95% of thrombosis is provoked. Different triggering risk factors are responsible for thrombosis in neonates, but the most important risk factors for thrombosis are central catheters, fluid fluctuations, liver dysfunction, and septic and inflammatory conditions. Low-molecular-weight heparins are the agents of choice for anticoagulation.


Subject(s)
Hemostatics , Thrombosis , Infant, Newborn , Adult , Infant , Child , Humans , Thrombosis/etiology , Blood Coagulation , von Willebrand Factor , Thrombin
SELECTION OF CITATIONS
SEARCH DETAIL
...